

Better Builds with Maven
The How-to Guide for Maven 2.0

John Casey
Vincent Massol

Brett Porter
Carlos Sanchez

Jason van Zyl

Better Builds with Maven. The How-to Guide for Maven 2.0

© 2007 DevZuz

The contents of this publication are protected by U.S. copyright law and international treaties.
Unauthorized reproduction of this publication or any portion of it is strictly prohibited.

While every precaution has been taken in the preparation of this book, the publisher and the
authors assume no responsibility for errors or omissions, or for damages resulting from the use of
information contained in this book or from the use of programs and source code that may
accompany it. In no event shall the publisher and the authors be liable for any loss of profit or any
other commercial damage caused or alleged to have been caused directly or indirectly by this
book.

Printed: August 2007 in the USA

Version 1.3.1

Acknowledgments
I'm very lucky to have been able to write this book with the core Maven team. They are all great
developers and working with them on Maven since 2002 has been an endless source of discoveries
and enlightening. Jason van Zyl and I were initially supposed to write half of the book but we soon
realized that there was a substantial amount of work to be done on the code to stabilize Maven and
the plugins before we could write about it. This is when Brett Porter, Carlos Sanchez and John D.
Casey stepped up to the plate and jumped on board to help us. They ended up writing a big portion of
the book and improving the overall book's quality by several folds. Thank you guys! We owe you. I'd
like to thank Jason of course who's guided Maven all those years and who's had the foresight and
courage to rewrite Maven 2 from scratch, taking into account all learnings from the past.

A special thank goes to Jesse McConnell who's helped me a lot to write the J2EE chapter and
especially the Web Services part. Thanks also to all our reviewers who provided great feedback and
fixed our errors. They are all part of the vibrant Maven community whether as committers or
contributors. In no special order, I'd like to thank Stephane Nicoll, Napoleon Esmundo C. Ramirez,
Felipe Leme, Jerome Lacoste, Bill Dudney and David Blevins.

A big thank you to DevZuz which sponsored this book and a company I admire for really
understanding open source. Thanks to Winston Damarillo and Gordon King for making this book
possible and thanks to Natalie Burdick for driving it relentlessly to completion, which is not a small feat
when you have to manage a bunch of hardcore open source developers who continually lapse into
coding when they should be writing instead! Delivering a quality book would not have been possible
without the professional help of Lisa Malgeri and Elena Renard who did all layouts, copy editing and
more generally transformed our technical prose into proper and readable English. Thank you to
Joakim Erdfelt for the graphical images in our Figures.

A huge thank to Pivolis for allowing me to work part time on the book even though the return on
investment was far from being guaranteed! Once more Francois Hisquin and Jean-Yves Grisi have
proved that they have their employees' satisfaction at heart.

Last but not least, all my love goes to my wife Marie-Albane and my 3 young kids who kept loving me
unfalteringly even though I spent a good portion of our play-time to write this book.

Vincent Massol

I'd like to start by thanking everyone who has been involved in the Maven community over the years,
for sticking with it through some of the early development and for holding the development team to a
higher standard. Maven is the cumulative work of nearly 40 committers and an even larger number of
contributors who've taken the time to give feedback, contribute ideas, answer questions, test features,
and submit fixes.

Jason van Zyl deserves particular credit and has my constant admiration for having the foresight to
start the project and for continuing to stick unwaveringly to his vision throughout its development.

I'd also like to thank Paul Russell and the development team during my time at Fairfax Digital, for
trusting my judgment to use Maven on our projects, and without whom I would never have been able
to get involved in the project in the first place. Both I and the Maven project owe you all a debt of
gratitude.

I'm grateful to have had the opportunity to finally write a book about Maven, and to do so with such a
number of my talented friends and colleagues. To the authors Jason, Vincent, John and Carlos -
congratulations on a job well done. To Natalie Burdick, for her dedication to see this through, despite
having all of the least enjoyable tasks of keeping the development on track, doing additional copy
editing and organizing its release. To Lisa Malgeri and Elena Renard, for their copy editing, formatting
and development of the book's template, whose work made this book as professional and polished as
it is.

I'm very thankful to the team at DevZuz for not only sponsoring the development of the book and
making it available free of charge, but for the opportunity to work in such a tremendous environment.
It is a rare thing to be able to work with such a friendly group of people that are among the brightest in
their field, doing what you enjoy and being able to see your our own personal vision realized.

Personally, I'd like to say how much I appreciate all of my family, friends, and those of St Paul's
Anglican church for all of their care, support, help and encouragement in everything that I do.

My most heartfelt thanks and all of my love go to my wife Laura, for loving me as I am despite all my
flaws, for her great patience and sacrifice in allowing me to work at all hours from home, and for
leaving her native Michigan to live in a bizarre foreign land. I continue to hope that it was for me and
not just because of the warmer climate.

Brett Porter

I would like to thank professor Fernando Bellas for encouraging my curiosity about the open source
world, and the teammates during my time at Softgal, for accepting my crazy ideas about open source.

Also, I'd like to thank my family for their continuous support, especially my parents and my brother for
helping me whenever I needed. Thanks also to all the people in Galicia for that delicious food I miss
so much when traveling around the world.

Carlos Sanchez

Many thanks to Jesse McConnell for his contributions to the book. It is much appreciated.

All of us would like to thank Lisa Malgeri, Elena Renard and Joakim Erdfelt for their many
contributions to the book.

Finally, we would like to thank all the reviewers who greatly enhanced the content and quality of this
book: Natalie Burdick, Stephane Nicoll, Napoleon Esmundo C. Ramirez, Felipe Leme, Jerome
Lacoste, Bill Dudney, David Blevins, Lester Ecarma, Ruel Loehr, Mark Hobson, Tim O'Brien, Chris
Berry, Abel Rodriguez, Fabrice Bellingard, Allan Ramirez, Emmanuel Venisse and John Tolentino.

Vincent, Jason, John, Brett and Carlos

About the Authors

Vincent Massol has been an active participant in the Maven community as both a committer and a
member of the Project Management Committee (PMC) since Maven's early days in 2002. Vincent has
directly contributed to Maven's core, as well as to various Maven plugins. In addition to his work on
Maven, he founded the Jakarta Cactus project-a simple testing framework for server-side Java code
and the Cargo project-a J2EE container manipulation framework. Vincent lives and works in Paris,
where he is the technical director of Pivolis, a company which specializes in collaborative offshore
software development using Agile methodologies. This is Vincent's third book; he is a co-author of
JUnit in Action, published by Manning in 2003 (ISBN 1-930-11099-5) and Maven: A Developer's
Notebook, published by O'Reilly in 2005 (ISBN 0-596-00750-7).

Jason van Zyl: Jason van Zyl focuses on improving the Software Development Infrastructure
associated with medium to large scale projects, which has led to the founding of the Apache Maven
project. He continues to work directly on Maven and serves as the Chair of the Apache Maven Project
Management Committee.

Brett Porter has been involved in the Apache Maven project since early 2003, discovering Maven
while searching for a simpler way to define a common build process across projects. Immediately
hooked, Brett became increasingly involved in the project's development, joining the Maven Project
Management Committee (PMC) and directing traffic for both the 1.0 and 2.0 major releases.
Additionally, Brett has become involved in a variety of other open source projects, and is a Member of
the Apache Software Foundation. Brett is a co-founder and the Vice President of Engineering at
DevZuz, where he hopes to be able to make the lives of other developers easier. He is grateful to
work and live in the suburbs of Sydney, Australia.

John Casey became involved in the Maven community in early 2002, when he began looking for
something to make his job as Ant “buildmeister” simpler. He was invited to become a Maven
committer in 2004, and in 2005, John was elected to the Maven Project Management Committee
(PMC). Since 2004, his focus in the Maven project has been the development of Maven 2. Build
management and open source involvement have been common threads throughout his professional
career, and today a large part of John's job focus is to continue the advancement of Maven as a
premier software development tool. John lives in Gainesville, Florida with his wife, Emily. When he's
not working on Maven, John enjoys amateur astrophotography, roasting coffee, and working on his
house.

Carlos Sanchez received his Computer Engineering degree in the University of Coruña, Spain, and
started early in the open source technology world. He created his own company, CSSC, specializing
in open source consulting, supporting both European and American companies to deliver pragmatic
solutions for a variety of business problems in areas like e-commerce, financial, telecommunications
and, of course, software development. He enjoys cycling and raced competitively when he was
younger.

This page left intentionally blank.

Table of Contents

Preface 17

1. Introducing Maven 21
1.1. Maven Overview 22

1.1.1. What is Maven? 22
1.1.2. Maven's Origins 23
1.1.3. What Does Maven Provide? 24

1.2. Maven’s Principles 25
1.2.1. Convention Over Configuration 26

Standard directory layout for projects 27
One primary output per project 27
Standard naming conventions 28

1.2.2. Reuse of Build Logic 28
1.2.3. Declarative Execution 28

Maven's project object model (POM) 28
Maven's build life cycle 30

1.2.4. Coherent Organization of Dependencies 31
Local Maven repository 32
Locating dependency artifacts 34

1.3. Maven's Benefits 36
2. Getting Started with Maven 37

2.1. Preparing to Use Maven 38
2.2. Creating Your First Maven Project 39
2.3. Compiling Application Sources 40
2.4. Compiling Test Sources and Running Unit Tests 42
2.5. Packaging and Installation to Your Local Repository 44
2.6. Handling Classpath Resources 46

2.6.1. Handling Test Classpath Resources 48
2.6.2. Filtering Classpath Resources 49
2.6.3. Preventing Filtering of Binary Resources 52

2.7. Using Maven Plugins 53
2.8. Summary 54

3. Creating Applications with Maven 55
3.1. Introduction 56
3.2. Setting Up an Application Directory Structure 56
3.3. Using Project Inheritance 59
3.4. Managing Dependencies 61
3.5. Using Snapshots 63
3.6. Resolving Dependency Conflicts and Using Version Ranges 64
3.7. Utilizing the Build Life Cycle 68

9

3.8. Using Profiles 70
3.9. Deploying your Application 74

3.9.1. Deploying to the File System 74
3.9.2. Deploying with SSH2 75
3.9.3. Deploying with SFTP 75
3.9.4. Deploying with an External SSH 76
3.9.5. Deploying with FTP 77

3.10. Creating a Web Site for your Application 78
3.11. Summary 84

4. Building J2EE Applications 85
4.1. Introduction 86
4.2. Introducing the DayTrader Application 86
4.3. Organizing the DayTrader Directory Structure 87
4.4. Building a Web Services Client Project 91
4.5. Building an EJB Project 95
4.6. Building an EJB Module With Xdoclet 100
4.7. Deploying EJBs 103
4.8. Building a Web Application Project 105
4.9. Improving Web Development Productivity 108
4.10. Deploying Web Applications 114
4.11. Building an EAR Project 117
4.12. Deploying a J2EE Application 122
4.13. Testing J2EE Application 126
4.14. Summary 132

5. Developing Custom Maven Plugins 133
5.1. Introduction 134
5.2. A Review of Plugin Terminology 134
5.3. Bootstrapping into Plugin Development 135

5.3.1. The Plugin Framework 135
Participation in the build life cycle 136
Accessing build information 137
The plugin descriptor 137

5.3.2. Plugin Development Tools 138
Choose your mojo implementation language 140

5.3.3. A Note on the Examples in this Chapter 140
5.4. Developing Your First Mojo 141

5.4.1. BuildInfo Example: Capturing Information with a Java Mojo 141
Prerequisite: Building the buildinfo generator project 141
Using the archetype plugin to generate a stub plugin project 142
The mojo 142
The Plugin POM 145
Binding to the life cycle 146
The output 147

5.4.2. BuildInfo Example: Notifying Other Developers with an Ant Mojo 148

10

The Ant target 148
The Mojo Metadata file 149
Modifying the Plugin POM for Ant Mojos 150
Binding the Notify Mojo to the life cycle 152

5.5. Advanced Mojo Development 153
5.5.1. Gaining Access to Maven APIs 153
5.5.2. Accessing Project Dependencies 154

Injecting the project dependency set 154
Requiring dependency resolution 155
BuildInfo example: logging dependency versions 156

5.5.3. Accessing Project Sources and Resources 157
Adding a source directory to the build 158
Adding a resource to the build 159
Accessing the source-root list 160
Accessing the resource list 162
Note on testing source-roots and resources 163

5.5.4. Attaching Artifacts for Installation and Deployment 164
5.6. Summary 167

6. Assessing Project Health with Maven 169
6.1. What Does Maven Have to do With Project Health? 170
6.2. Adding Reports to the Project Web site 171
6.3. Configuration of Reports 173
6.4. Separating Developer Reports From User Documentation 177
6.5. Choosing Which Reports to Include 183
6.6. Creating Reference Material 185
6.7. Monitoring and Improving the Health of Your Source Code 189
6.8. Monitoring and Improving the Health of Your Tests 197
6.9. Monitoring and Improving the Health of Your Dependencies 202
6.10. Monitoring and Improving the Health of Your Releases 205
6.11. Viewing Overall Project Health 209
6.12. Summary 209

7. Team Collaboration with Maven 211
7.1. The Issues Facing Teams 212
7.2. How to Set up a Consistent Developer Environment 213
7.3. Creating a Shared Repository 216
7.4. Creating an Organization POM 219
7.5. Continuous Integration with Continuum 222
7.6. Team Dependency Management Using Snapshots 232
7.7. Creating a Standard Project Archetype 237
7.8. Cutting a Release 240
7.9. Summary 244

8. Migrating to Maven 245
8.1. Introduction 246

8.1.1. Introducing the Spring Framework 246

11

8.2. Where to Begin? 248
8.3. Creating POM files 254
8.4. Compiling 254
8.5. Testing 258

8.5.1. Compiling Tests 258
8.5.2. Running Tests 260

8.6. Other Modules 262
8.6.1. Avoiding Duplication 262
8.6.2. Referring to Test Classes from Other Modules 263
8.6.3. Building Java 5 Classes 263
8.6.4. Using Ant Tasks From Inside Maven 266
8.6.5. Non-redistributable Jars 268
8.6.6. Some Special Cases 268

8.7. Restructuring the Code 269
8.8. Summary 269

Appendix A: Resources for Plugin Developers 271
A.1. Maven's Life Cycles 272

A.1.1. The default Life Cycle 272
Life-cycle phases 272
Bindings for the jar packaging 274
Bindings for the maven-plugin packaging 275

A.1.2. The clean Life Cycle 276
Life-cycle phases 276
Default life-cycle bindings 276

A.1.3. The site Life Cycle 277
Life-cycle phases 277
Default Life Cycle Bindings 277

A.2. Mojo Parameter Expressions 278
A.2.1. Simple Expressions 278
A.2.2. Complex Expression Roots 279
A.2.3. The Expression Resolution Algorithm 279

Plugin metadata 280
Plugin descriptor syntax 280

A.2.4. Java Mojo Metadata: Supported Javadoc Annotations 284
Class-level annotations 284
Field-level annotations 285

A.2.5. Ant Metadata Syntax 285

Appendix B: Standard Conventions 289
B.1. Standard Directory Structure 290
B.2. Maven’s Super POM 291
B.3. Maven’s Default Build Life Cycle 292

Bibliography 293

Index 295

12

List of Tables
Table 3-1: Module packaging types 58
Table 3-2: Examples of Version Ranges 66
Table 3-3: Site descriptor 80
Table 4-1: Axis generated classes 91
Table 4-2: WAR plugin configuration properties 108
Table 5-1: Life-cycle bindings for jar packaging 136
Table 5-2: Key differences between compile-time and test-time mojo activities 164
Table 6-1: Project Web site content types 178
Table 6-2: Report highlights 184
Table 6-3: Built-in Checkstyle configurations 196
Table A-1: The default life-cycle bindings for the jar packaging 274
Table A-2: A summary of the additional mojo bindings 275
Table A-3: The clean life-cycle bindings for the jar packaging 276
Table A-4: The site life-cycle bindings for the jar packaging 277
Table A-5: Primitive expressions supported by Maven's plugin parameter 278
Table A-6: A summary of the valid root objects for plugin parameter expressions 279
Table A-7: A summary of class-level javadoc annotations 284
Table A-8: Field-level annotations 285
Table B-1: Standard directory layout for maven project content 290
Table B-2: Phases in Maven's life cycle 292

13

List of Figures
Figure 1-1: Artifact movement from remote to local repository.. 33
Figure 1-2: General pattern for the repository layout... 34
Figure 1-3: Sample directory structure... 34
Figure 2-1: Directory structure after archetype generation.. 40
Figure 2-2: Directory structure after adding the resources directory... 46
Figure 2-3: Directory structure of the JAR file created by Maven.. 47
Figure 2-4: Directory structure after adding test resources.. 48
Figure 3-1: Proficio directory structure.. 57
Figure 3-2: Proficio-stores directory.. 58
Figure 3-3: Version parsing.. 66
Figure 3-4: Version Parsing.. 67
Figure 3-5: The site directory structure... 78
Figure 3-6: The target directory.. 82
Figure 3-7: The sample generated site.. 83
Figure 4-1: Architecture of the DayTrader application... 86
Figure 4-2: Module names and a simple flat directory structure.. 88
Figure 4-3: Modules split according to a server-side vs client-side directory organization............................... 89
Figure 4-4: Nested directory structure for the EAR, EJB and Web modules... 89
Figure 4-5: Directory structure of the wsappclient module... 91
Figure 4-6: Directory structure for the DayTrader ejb module... 95
Figure 4-7: Directory structure for the DayTrader ejb module when using Xdoclet... 101
Figure 4-8: Directory structure for the DayTrader web module showing some Web application resources.....105
Figure 4-9: DayTrader JSP registration page served by the Jetty plugin... 111
Figure 4-10: Modified registration page automatically reflecting our source change...................................... 111
Figure 4-11: Directory structure of the ear module.. 117
Figure 4-12: Directory structure of the ear module showing the Geronimo deployment plan.......................... 123
Figure 4-13: The new functional-tests module amongst the other DayTrader modules 126
Figure 4-14: Directory structure for the functional-tests module.. 127
Figure 6-1: The reports generated by Maven.. 171
Figure 6-2: The Surefire report... 172
Figure 6-3: The initial setup.. 179
Figure 6-4: The directory layout with a user guide... 180
Figure 6-5: The new Web site.. 181
Figure 6-6: An example source code cross reference.. 186
Figure 6-7: An example PMD report... 189
Figure 6-8: An example CPD report.. 193
Figure 6-9: An example Checkstyle report.. 195

14

Figure 6-10: An example Cobertura report... 198
Figure 6-11: An example dependency report... 202
Figure 6-12: The dependency convergence report.. 204
Figure 6-13: An example Clirr report.. 205
Figure 7-1: The Continuum setup screen... 223
Figure 7-2: Add project screen shot.. 226
Figure 7-3: Summary page after projects have built... 227
Figure 7-4: Schedule configuration... 229
Figure 7-5: Adding a build definition for site deployment... 230
Figure 7-6: Continuum configuration.. 235
Figure 7-7: Archetype directory layout... 238
Figure 8-1: Dependency relationship between Spring modules... 247
Figure 8-2: A sample spring module directory.. 248
Figure 8-3: A tiger module directory... 264
Figure 8-4: The final directory structure... 264
Figure 8-5: Dependency relationship, with all modules.. 265

15

This page left intentionally blank.

16

Preface

Preface
Welcome to Better Builds with Maven, an indispensable guide to understand and use Maven 2.0.

Maven 2 is a product that offers immediate value to many users and organizations. As you will soon
find, it does not take long to realize these benefits. Perhaps, reading this book will take you longer.
Maven works equally well for small and large projects, but Maven shines in helping teams operate
more effectively by allowing team members to focus on what the stakeholders of a project require --
leaving the build infrastructure to Maven!

This guide is not meant to be an in-depth and comprehensive resource but rather an introduction,
which provides a wide range of topics from understanding Maven's build platform to programming
nuances.

This guide is intended for Java developers who wish to implement the project management and
comprehension capabilities of Maven 2 and use it to make their day-to-day work easier and to get
help with the comprehension of any Java-based project. We hope that this book will be useful for Java
project managers as well.

For first time users, it is recommended that you step through the material in a sequential fashion. For
users more familiar with Maven (including Maven 1.x), this guide is written to provide a quick solution
for the need at hand.

17

Better Builds with Maven

Organization
The first two chapters of the book are geared toward a new user of Maven 2, they discuss what
Maven is and get you started with your first Maven project. Chapter 3 builds on that and shows you
how to build a real-world project. Chapter 4 shows you how to build and deploy a J2EE application.
Chapter 5 focuses on developing plugins for Maven. Chapter 6 discusses project monitoring issues
and reporting, Chapter 7 discusses using Maven in a team development environment, and Chapter 8
shows you how to migrate Ant builds to Maven.

Chapter 1, Introducing Maven, goes through the background and philosophy behind Maven and
defines what Maven is.
Chapter 2, Getting Started with Maven, gives detailed instructions on creating, compiling and
packaging your first project. After reading this second chapter, you should be up and running with
Maven.
Chapter 3, Creating Applications with Maven, illustrates Maven's best practices and advanced
uses by working on a real-world example application. In this chapter you will learn to set up the
directory structure for a typical application and the basics of managing an application's development
with Maven.
Chapter 4, Building J2EE Applications, shows how to create the build for a full-fledged J2EE
application, how to use Maven to build J2EE archives (JAR, WAR, EAR, EJB, Web Services), and
how to use Maven to deploy J2EE archives to a container. At this stage you'll pretty much become an
expert Maven user.
Chapter 5, Developing Custom Maven Plugins, focuses on the task of writing custom plugins. It
starts by describing fundamentals, including a review of plugin terminology and the basic mechanics
of the Maven plugin framework. From there, the chapter covers the tools available to simplify the life
of the plugin developer. Finally, it discusses the various ways that a plugin can interact with the Maven
build environment and explores some examples.
Chapter 6, Assessing Project Health with Maven, discusses Maven's monitoring tools, reporting
tools, and how to use Maven to generate a Web site for your project. In this chapter, you will be
revisiting the Proficio application that was developed in Chapter 3, and learning more about the health
of the project.
Chapter 7, Team Collaboration with Maven, looks at Maven as a set of practices and tools that
enable effective team communication and collaboration. These tools aid the team to organize,
visualize, and document for reuse the artifacts that result from a software project. You will learn how
to use Maven to ensure successful team development.
Chapter 8, Migrating to Maven, explains a migration path from an existing build in Ant to Maven.
After reading this chapter, you will be able to take an existing Ant-based build, split it into modular
components if needed, compile and test the code, create JARs, and install those JARs in your local
repository using Maven. At the same time, you will be able to keep your current build working.

18

Preface

Errata
We have made every effort to ensure that there are no errors in the text or in the code. However, we
are human, so occasionally something will come up that none of us caught prior to publication. To find
the errata page for this book, go to http://www.devzuz.com/web/guest/products/resources and locate
the View Book Errata link. On this page you will be able to view all errata that have been
submitted for this book and posted by Maven editors. You can also click the Submit Errata link to
notify us of any errors that you might have found.

How to Contact Us
We want to hear about any errors you find in this book. Simply email the information to
community@devzuz.com. We’ll check the information and, if appropriate, post an update to the
book’s errata page and fix the problem in subsequent editions of the book.

How to Download the Source Code
All of the source code used in this book is available for download at
http://www.devzuz.com/web/guest/products/resources. Once at the site, click the Get Sample
Code link to obtain the source code for the book.

We offer source code for download, errata, and technical support from the DevZuz Web site at
http://www.devzuz.com/web/guest/products/resources.

So if you have Maven 2.0 installed, then you're ready to go.

19

http://www.devzuz.com/web/guest/products/resources
http://www.devzuz.com/web/guest/products/resources
mailto:community@devzuz.com
http://www.devzuz.com/web/guest/products/resources

Better Builds with Maven

This page left intentionally blank.

20

1. Introducing Maven

Introducing Maven
This chapter covers:

• An overview of Maven
• Maven's objectives
• Maven's principles:

• Convention over configuration
• Reuse of build logic
• Declarative execution
• Coherent organization of dependencies
• Maven's benefits

Things should be made as simple as
possible, but not any simpler.

- Albert Einstein

21

Better Builds with Maven

1.1. Maven Overview
Maven provides a comprehensive approach to managing software projects. From compilation, to
distribution, to documentation, to team collaboration, Maven provides the necessary abstractions that
encourage reuse and take much of the work out of project builds.

1.1.1. What is Maven?
Maven is a project management framework, but this doesn't tell you much about Maven. It's the most
obvious three-word definition of Maven the authors could come up with, but the term project
management framework is a meaningless abstraction that doesn't do justice to the richness and
complexity of Maven. Too often technologists rely on abstract phrases to capture complex topics in
three or four words, and with repetition phrases such as project management and enterprise software
start to lose concrete meaning.

When someone wants to know what Maven is, they expect a short, sound-bite answer. “Well, it is a
build tool or a scripting framework.” Maven is more than three boring, uninspiring words. It is a
combination of ideas, standards, and software, and it is impossible to distill the definition of Maven to
simply digested sound-bites. Revolutionary ideas are often difficult to convey with words. If you are
interested in a fuller, richer definition of Maven read this introduction; it will prime you for the concepts
that are to follow. If you are reading this introduction just to find something to tell your manager1, you
can stop reading now and skip to Chapter 2.

So, what exactly is Maven? Maven encompasses a set of build standards, an artifact repository
model, and a software engine that manages and describes projects. It defines a standard life cycle for
building, testing, and deploying project artifacts. It provides a framework that enables easy reuse of
common build logic for all projects following Maven's standards. The Maven project at the Apache
Software Foundation is an open source community which produces software tools that understand a
common declarative Project Object Model (POM). This book focuses on the core tool produced by the
Maven project, Maven 2, a framework that greatly simplifies the process of managing a software
project.

You may have been expecting a more straightforward answer. Perhaps you picked up this book
because someone told you that Maven is a build tool. Don't worry, Maven can be the build tool you
need, and many developers who have approached Maven as another build tool have come away with
a finely tuned build system. While you are free to use Maven as “just another build tool”, to view it in
such limited terms is akin to saying that a web browser is nothing more than a tool that reads
hypertext.

Maven, and the technologies related to the Maven project, are beginning to have a transformative
effect on the Java community.

In addition to solving straightforward, first-order problems such as simplifying builds, documentation,
distribution, and the deployment process, Maven also brings with it some compelling second-order
benefits.

1 You can tell your manager: “Maven is a declarative project management tool that decreases your overall time
to market by effectively leveraging cross-project intelligence. It simultaneously reduces your duplication
effort and leads to higher code quality .”

22

Introducing Maven

As more and more projects and products adopt Maven as a foundation for project management, it
becomes easier to understand the relationships between projects and to establish a system that
navigates and reports on these relationships. Maven's standard formats enable a sort of "Semantic
Web" for programming projects. Maven's standards and centralized repository model offer an easy-to-
use naming system for projects. Using Maven has made it easier to add external dependencies and
publish your own project components.

So, to answer the original question: Maven is many things to many people. It is a set of standards and
an approach to project development, as much as it is a piece of software. Maven is a way of
approaching a set of software as a collection of highly-interdependent components, which can be
described in a common format. It is the next step in the evolution of how individuals and organizations
collaborate to create software systems. Once you get up to speed on the fundamentals of Maven, you
will wonder how you ever developed without it.

1.1.2. Maven's Origins
Maven was borne of the practical desire to make several projects at the Apache Software Foundation
(ASF) work in the same, predictable way. Prior to Maven, every project at the ASF had a different
approach to compilation, distribution, and Web site generation. The ASF was effectively a series of
isolated islands of innovation. While there were some common themes across the separate builds,
each community was creating its own build systems and there was no reuse of build logic across
projects. The build process for Tomcat was different than the build process for Struts, and the Turbine
developers had a different site generation process than the Jakarta Commons developers.

This lack of a common approach to building software meant that every new project tended to copy
and paste another project's build system. Ultimately, this copy and paste approach to build reuse
reached a critical tipping point at which the amount of work required to maintain the collection of build
systems was distracting from the central task of developing high-quality software. In addition, for a
project with a difficult build system, the barrier to entry was extremely high; projects such as Jakarta
Taglibs had (and continue to have) a tough time attracting developer interest because it could take an
hour to configure everything in just the right way. Instead of focusing on creating good component
libraries or MVC frameworks, developers were building yet another build system.

Maven entered the scene by way of the Turbine project, and it immediately sparked interest as a sort
of Rosetta Stone for software project management. Developers within the Turbine project could freely
move between subcomponents, knowing clearly how they all worked just by understanding how one
of the components worked. Once developers spent time learning how one project was built, they did
not have to go through the process again when they moved on to the next project. Developers at the
ASF stopped figuring out creative ways to compile, test, and package software, and instead, started
focusing on component development.

The same standards extended to testing, generating documentation, generating metrics and reports,
and deploying. If you followed the Maven Build Life Cycle, your project gained a build by default. Soon
after the creation of Maven other projects, such as Jakarta Commons, the Codehaus community
started to adopt Maven 1 as a foundation for project management.

Many people come to Maven familiar with Ant, so it's a natural association, but Maven is an entirely
different creature from Ant. Maven is not just a build tool, and not necessarily a replacement for Ant.

23

Better Builds with Maven

Whereas Ant provides a toolbox for scripting builds, Maven provides standards and a set of patterns
in order to facilitate project management through reusable, common build strategies.

However, if your project currently relies on an existing Ant build script that must be maintained,
existing Ant scripts (or Make files) can be complementary to Maven and used through Maven's plugin
architecture. Plugins allow developers to call existing Ant scripts and Make files and incorporate those
existing functions into the Maven build life cycle.

1.1.3. What Does Maven Provide?
Maven provides a useful abstraction for building software in the same way an automobile provides an
abstraction for driving. When you purchase a new car, the car provides a known interface; if you've
learned how to drive a Jeep, you can easily drive a Camry. Maven takes a similar approach to
software projects: if you can build one Maven project you can build them all, and if you can apply a
testing plugin to one project, you can apply it to all projects. You describe your project using Maven's
model, and you gain access to expertise and best-practices of an entire industry.

Given the highly inter-dependent nature of projects in open source, Maven’s ability to standardize
locations for source files, documentation, and output, to provide a common layout for project
documentation, and to retrieve project dependencies from a shared storage area makes the building
process much less time consuming, and much more transparent.

Maven provides you with:

• A comprehensive model for software projects
• Tools that interact with this declarative model

Maven provides a comprehensive model that can be applied to all software projects. The model uses
a common project “language”, and the software tool (named Maven) is just a supporting element
within this model. Projects and systems that use Maven's standard, declarative build approach tend to
be more transparent, more reusable, more maintainable, and easier to comprehend.

An individual Maven project's structure and contents are declared in a Project Object Model (POM),
which forms the basis of the entire Maven system. The key value to developers from Maven is that it
takes a declarative approach rather than requiring developers to create the build process themselves,
referred to as "building the build". Maven allows developers to declare life-cycle goals and project
dependencies that rely on Maven’s default structures and plugin capabilities, in order to perform the
build. Much of the project management and build orchestration (compile, test, assemble, install) is
effectively delegated to the POM and the appropriate plugins. Developers can build any given project
without having to understand how the individual plugins work (scripts in the Ant world).

24

Introducing Maven

Organizations and projects that adopt Maven benefit from:

• Coherence - Maven allows organizations to standardize on a set of best practices. Because
Maven projects adhere to a standard model they are less opaque. The definition of this term
from the American Heritage dictionary captures the meaning perfectly: “Marked by an
orderly, logical, and aesthetically consistent relation of parts.“

• Reusability - Maven is built upon a foundation of reuse. When you adopt Maven you are
effectively reusing the best practices of an entire industry.

• Agility - Maven lowers the barrier to reuse not only for build logic, but also for software
components. Maven makes it is easier to create a component and then integrate it into a
multi-project build. Developers can jump between different projects without the steep
learning curve that accompanies custom, home-grown build systems.

• Maintainability - Organizations that adopt Maven can stop “building the build”, and focus on
building the application. Maven projects are more maintainable because they follow a
common, publicly-defined model.

Without these advantages, it is improbable that multiple individuals can work productively together on
a project. Without visibility it is unlikely one individual will know what another has accomplished and it
is likely that useful code will not be reused.

When everyone is constantly searching to find all the different bits and pieces that make up a project,
there is little chance anyone is going to comprehend the project as a whole. Further, when code is not
reused it is very hard to create a maintainable system. As a result you end up with a lack of shared
knowledge, along with a commensurate degree of frustration among team members. This is a natural
effect when processes don't work the same way for everyone.

1.2. Maven’s Principles
According to Christopher Alexander "patterns help create a shared language for communicating
insight and experience about problems and their solutions". The following Maven principles were
inspired by Christopher Alexander's idea of creating a shared language:

• Convention over configuration
• Declarative execution
• Reuse of build logic
• Coherent organization of dependencies

Maven provides a shared language for software development projects. As mentioned earlier, Maven
provides a structured build life cycle so that problems can be approached in terms of this structure.
Each of the principles above enables developers to describe their projects at a higher level of
abstraction, allowing more effective communication and freeing team members to get on with the
important work of creating value at the application level. This chapter will examine each of these
principles in detail. You will see these principles in action in the following chapter, when you create
your first Maven project.

25

Better Builds with Maven

1.2.1. Convention Over Configuration
One of the central tenets of Maven is to provide sensible default strategies for the most common
tasks, so that you don't have to think about the mundane details. This is not to say that you can't
override Maven's defaults, but the use of sensible default strategies is highly encouraged, so stray
from these defaults when absolutely necessary only.

This "convention over configuration" tenet has been popularized by the Ruby on Rails (ROR)
community and specifically encouraged by ROR's creator David Heinemeier Hansson who
summarizes the notion as follows:

“Rails is opinionated software. It eschews placing the old ideals of software in a primary position.
One of those ideals is flexibility, the notion that we should try to accommodate as many
approaches as possible, that we shouldn't pass judgment on one form of development over
another. Well, Rails does, and I believe that's why it works.

With Rails, you trade flexibility at the infrastructure level to gain flexibility at the application level. If
you are happy to work along the golden path that I've embedded in Rails, you gain an immense
reward in terms of productivity that allows you to do more, sooner, and better at the application
level.

One characteristic of opinionated software is the notion of 'convention over configuration'. If you
follow basic conventions, such as classes are singular and tables are plural (a person class relates
to a people table), you're rewarded by not having to configure that link. The class automatically
knows which table to use for persistence. We have a ton of examples like that, which all add up to
make a huge difference in daily use.”2

David Heinemeier Hansson articulates very well what Maven has aimed to accomplish since its
inception (note that David Heinemeier Hansson in no way endorses the use of Maven, he probably
doesn't even know what Maven is and wouldn't like it if he did because it's not written in Ruby yet!):
that is that you shouldn't need to spend a lot of time getting your development infrastructure
functioning Using standard conventions saves time, makes it easier to communicate to others, and
allows you to create value in your applications faster with less effort.

With Maven you slot the various pieces in where it asks and Maven will take care of almost all of the
mundane aspects for you. You don’t want to spend time fiddling with building, generating
documentation, or deploying. All of these things should simply work, and this is what Maven provides.

There are three primary conventions that Maven employs to promote a standardized development
environment:

• Standard directory layout for projects
• The concept of a single Maven project producing a single output
• Standard naming conventions

Let's elaborate on each of these points in the following sections.

2 O'Reilly interview with DHH

26

http://www.oreillynet.com/pub/a/network/2005/08/30/ruby-rails-david-heinemeier-hansson.html

Introducing Maven

 Standard directory layout for projects
The first convention used by Maven is a standard directory layout for project sources, project
resources, configuration files, generated output, and documentation. These components are generally
referred to as project content.

Maven encourages a common arrangement of project content so that once you are familiar with these
standard, default locations, you will be able to navigate within any Maven project you build in the
future.

It is a very simple idea but it can save you a lot of time. You will be able to look at other projects and
immediately understand the project layout. Follow the standard directory layout, and you will make it
easier to communicate about your project. If this saves you 30 minutes for each new project you look
at, even if you only look at a few new projects a year that's time better spent on your application.

First time users often complain about Maven forcing you to do things a certain way and the
formalization of the directory structure is the source of most of the complaints.

You can override any of Maven's defaults to create a directory layout of your choosing, but, when you
do this, you need to ask yourself if the extra configuration that comes with customization is really
worth it.

If you have no choice in the matter due to organizational policy or integration issues with existing
systems, you might be forced to use a directory structure that diverges from Maven's defaults. In this
case, you will be able to adapt your project to your customized layout at a cost, increased complexity
of your project's POM. If you do have a choice then why not harness the collective knowledge that
has built up as a result of using this convention? You will see clear examples of the standard directory
structure in the next chapter, but you can also take a look in Appendix B for a full listing of the
standard conventions.

 One primary output per project
The second convention used by Maven is the concept that a single Maven project produces only one
primary output. To illustrate,consider a set of sources for a client/server-based application that
contains client code, server code, and shared utility code.

You could produce a single JAR file which includes all the compiled classes, but Maven would
encourage you to have three, separate projects: a project for the client portion of the application, a
project for the server portion of the application, and a project for the shared utility code portion. In this
scenario, the code contained in each project has a different concern (role to play) and they should be
separated.

The separation of concerns (SoC) principle states that a given problem involves different kinds of
concerns, which should be identified and separated to cope with complexity and to achieve the
required engineering quality factors such as adaptability, maintainability, extendibility and reusability.

If you have placed all the sources together in a single project, the boundaries between our three
separate concerns can easily become blurred and the ability to reuse the utility code could prove to be
difficult. Having the utility code in a separate project (a separate JAR file), makes it much easier to
reuse. Maven pushes you to think clearly about the separation of concerns when setting up your
projects because modularity leads to reuse.

27

Better Builds with Maven

 Standard naming conventions
The third convention in Maven, a set of conventions really, is the use of a standard naming convention
for directories and for the primary output of each project. The naming conventions provide clarity and
immediate comprehension. This is important if there are multiple sub-projects involved in a build
process, because the naming convention keeps each one separate in a logical, easily comprehensible
manner.

This is illustrated in the Coherent Organization of Dependencies section, later in this chapter.

A simple example of a standard naming convention might be commons-logging-1.2.jar. It is
immediately obvious that this is version 1.2 of Commons Logging. If the JAR were named commons-
logging.jar you would not really have any idea of the version of Commons Logging. Moreover, in
a lot of cases, you would not even be able to get the information from the jar's manifest.

The intent behind the standard naming conventions employed by Maven is that it lets you understand
exactly what you are looking at by, well, looking at it. It doesn't make much sense to exclude pertinent
information when you can have it at hand to use.

Systems that cannot cope with information rich artifacts like commons-logging-1.2.jar are
inherently flawed because eventually, when something is misplaced, you'll track it down to a
ClassNotFound exception, which results because the wrong version of a JAR file was used. It's
happened to all of us, but with Maven, and it doesn't have to happen again.

1.2.2. Reuse of Build Logic
As you have already learned, Maven promotes reuse by encouraging a separation of concerns (SoC)
. Maven puts this SoC principle into practice by encapsulating build logic into coherent modules called
plugins. Maven can be thought of as a framework that coordinates the execution of plugins in a well
defined way.

In Maven there is a plugin for compiling source code, a plugin for running tests, a plugin for creating
JARs, a plugin for creating Javadocs, and many other functions. Even from this short list of examples
you can see that a plugin in Maven has a very specific role to play in the grand scheme of things. One
important concept to keep in mind is that everything accomplished in Maven is the result of a plugin
executing. Plugins are the key building blocks for everything in Maven.

1.2.3. Declarative Execution
Everything in Maven is driven in a declarative fashion using Maven's Project Object Model (POM) and
specifically, the plugin configurations contained in the POM. The execution of Maven's plugins is
coordinated by Maven's build life cycle in a declarative fashion with instructions from Maven's POM.

 Maven's project object model (POM)
Maven is project-centric by design, and the POM is Maven's description of a single project. Without
the POM, Maven is useless - the POM is Maven's currency. It is the POM that drives execution in
Maven and this approach can be described as model-driven or declarative execution.

28

Introducing Maven

The POM below is an example of what you could use to build and test a project. The POM is an XML
document and looks like the following (very) simplified example:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.mycompany.app</groupId>
 <artifactId>my-app</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

This POM will allow you to compile, test, and generate basic documentation. You, being the observant
reader, will ask “How this is possible using a 15 line file?”. The answer lies in Maven's implicit use of
its Super POM.

Maven's Super POM carries with it all the default conventions that Maven encourages, and is the
analog of the Java language's java.lang.Object class.

In Java, all objects have the implicit parent of java.lang.Object. Likewise, in Maven all POMs
have an implicit parent in Maven's Super POM. The Super POM can be rather intimidating at first
glance, so if you wish to find out more about it you can refer to Appendix B. The key feature to
remember is the Super POM contains important default information so you don't have to repeat this
information in the POMs you create.

The POM contains every important piece of information about your project. The POM shown
previously is a very simple POM, but still displays the key elements that every POM contains.

• project - This is the top-level element in all Maven pom.xml files.

• modelVersion - This required element indicates the version of the object model that the
POM is using. The version of the model itself changes very infrequently, but it is mandatory
in order to ensure stability when Maven introduces new features or other model changes.

• groupId - This element indicates the unique identifier of the organization or group that
created the project. The groupId is one of the key identifiers of a project and is typically
based on the fully qualified domain name of your organization. For example
org.apache.maven.plugins is the designated groupId for all Maven plugins.

• artifactId - This element indicates the unique base name of the primary artifact being
generated by this project. A typical artifact produced by Maven would have the form
<artifactId>-<version>.<extension> (for example, myapp-1.0.jar). Additional
artifacts such as source bundles also use the artifactId as part of their file name.

29

Better Builds with Maven

• packaging - This element indicates the package type to be used by this artifact (JAR,
WAR, EAR, etc.). This not only means that the artifact produced is a JAR, WAR, or EAR,
but also indicates a specific life cycle to use as part of the build process. The life cycle is a
topic dealt with later in this chapter. For now, just keep in mind that the selected packaging
of a project plays a part in customizing the build life cycle. The default value for the
packaging element is jar so you do not have to specify this in most cases.

• version - This element indicates the version of the artifact generated by the project.
Maven goes a long way to help you with version management and you will often see the
SNAPSHOT designator in a version, which indicates that a project is in a state of
development.

• name - This element indicates the display name used for the project. This is often used in
Maven's generated documentation, and during the build process for your project, or other
projects that use it as a dependency.

• url - This element indicates where the project's site can be found.

• description - This element provides a basic description of your project.

For a complete reference of the elements available for use in the POM please refer to the POM
reference at http://maven.apache.org/maven-model/maven.html.

 Maven's build life cycle
Software projects generally follow similar, well-trodden build paths: preparation, compilation, testing,
packaging, installation, etc. The path that Maven moves along to accommodate an infinite variety of
projects is called the build life cycle. In Maven, the build life cycle consists of a series of phases where
each phase can perform one or more actions, or goals, related to that phase. For example, the
compile phase invokes a certain set of goals to compile a set of classes.

In Maven you do day-to-day work by invoking particular phases in this standard build life cycle. For
example, you tell Maven that you want to compile, or test, or package, or install. The actions that have
to be performed are stated at a high level, and Maven deals with the details behind the scenes. It is
important to note that each phase in the life cycle will be executed up to and including the phase you
specify. So, if you tell Maven to compile, Maven will execute the validate, initialize,
generate-sources, process-sources, generate-resources, and compile phases that
precede it automatically.

The standard build life cycle consists of many phases and these can be thought of as extension
points. When you need to add some functionality to the build life cycle you do so with a plugin. Maven
plugins provide reusable build logic that can be slotted into the standard build life cycle. Any time you
need to customize the way your project builds you either use an existing plugin, or create a custom
plugin for the task at hand. See Chapter 2.7 Using Maven Plugins and Chapter 5 Developing Custom
Maven Plugins for examples and details on how to customize the Maven build.

30

http://maven.apache.org/maven-model/maven.html

Introducing Maven

1.2.4. Coherent Organization of Dependencies
We are now going to delve into how Maven resolves dependencies and discuss the intimately
connected concepts of dependencies, artifacts, and repositories. If you recall, our example POM has
a single dependency listed for Junit:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.mycompany.app</groupId>
 <artifactId>my-app</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

This POM states that your project has a dependency on JUnit, which is straightforward, but you may
be asking yourself “Where does that dependency come from?” and “Where is the JAR?” The answers
to those questions are not readily apparent without some explanation of how Maven's dependencies,
artifacts and repositories work. In “Maven-speak” an artifact is a specific piece of software.

In Java, the most common artifact is a JAR file, but a Java artifact could also be a WAR, SAR, or EAR
file. A dependency is a reference to a specific artifact that resides in a repository. In order for Maven
to attempt to satisfy a dependency, Maven needs to know what repository to search as well as the
dependency's coordinates. A dependency is uniquely identified by the following identifiers: groupId,
artifactId and version.

At a basic level, we can describe the process of dependency management as Maven reaching out
into the world, grabbing a dependency, and providing this dependency to your software project. There
is more going on behind the scenes, but the key concept is that Maven dependencies are declarative.

In the POM you are not specifically telling Maven where the dependencies are physically located, you
are simply telling Maven what a specific project expects.

Maven takes the dependency coordinates you provide in the POM, and it supplies these coordinates
to its own internal dependency mechanisms. With Maven, you stop focusing on a collection of JAR
files; instead you deal with logical dependencies. Your project doesn't require junit-3.8.1.jar,
instead it depends on version 3.8.1 of the junit artifact produced by the junit group. Dependency
Management is one of the most powerful features in Maven.

When a dependency is declared within the context of your project, Maven tries to satisfy that
dependency by looking in all of the remote repositories to which it has access, in order to find the
artifacts that most closely match the dependency request. If a matching artifact is located, Maven
transports it from that remote repository to your local repository for project use.

31

Better Builds with Maven

Maven has two types of repositories: local and remote. Maven usually interacts with your local
repository, but when a declared dependency is not present in your local repository Maven searches all
the remote repositories to which it has access to find what’s missing. Read the following sections for
specific details regarding where Maven searches for these dependencies.

 Local Maven repository
When you install and run Maven for the first time, it will create your local repository and populate it
with artifacts as a result of dependency requests. By default, Maven creates your local repository in
<user_home>/.m2/repository. You must have a local repository in order for Maven to work.
The following folder structure shows the layout of a local Maven repository that has a few locally
installed dependency artifacts such as junit-3.8.1.jar.

32

Introducing Maven

Figure 1-1: Artifact movement from remote to local repository

So you understand how the layout works, take a closer look at one of the artifacts that appeared in
your local repository,. In theory, a repository is just an abstract storage mechanism, but in practice the
repository is a directory structure in your file system. We’ll stick with our JUnit example and examine
the junit-3.8.1.jar artifact that are now in your local repository.

Above you can see the directory structure that is created when the JUnit dependency is resolved. On
the next page is the general pattern used to create the repository layout:

33

Better Builds with Maven

Figure 1-2: General pattern for the repository layout

If the groupId is a fully qualified domain name (something Maven encourages) such as x.y.z then
you will end up with a directory structure like the following:

Figure 1-3: Sample directory structure

In the first directory listing you can see that Maven artifacts are stored in a directory structure that
corresponds to Maven’s groupId of org.apache.maven.

 Locating dependency artifacts
When satisfying dependencies, Maven attempts to locate a dependency's artifact using the following
process: first, Maven will generate a path to the artifact in your local repository; for example, Maven
will attempt to find the artifact with a groupId of “junit”, artifactId of “junit”, and a version
of “3.8.1” in <user_home>/.m2/repository/junit/junit/3.8.1/junit-3.8.1.jar. If
this file is not present, Maven will fetch it from a remote repository.

34

Introducing Maven

By default, Maven will attempt to fetch an artifact from the central Maven repository at
http://repo1.maven.org/maven2.3 If your project's POM contains more than one remote repository,
Maven will attempt to download an artifact from each remote repository in the order defined in your
POM. Once the dependency is satisfied, the artifact is downloaded and installed in your local
repository.4

From this point forward, every project with a POM that references the same dependency will use this
single copy installed in your local repository. In other words, you don’t store a copy of junit-
3.8.1.jar for each project that needs it; all projects referencing this dependency share a single
copy of this JAR.

Your local repository is one-stop-shopping for all artifacts that you need regardless of how many
projects you are building. Before Maven, the common pattern in most projects was to store JAR files
in a project's subdirectory. If you were coding a web application, you would check the 10-20 JAR files,
upon which your project relies, into a lib directory, and you would add these dependencies to your
classpath.

While this approach works for a few projects, it doesn't scale easily to support an application with a
great number of small components. With Maven, if your project has ten web applications, which all
depend on version 1.2.6 of the Spring Framework, there is no need to store the various spring JAR
files in your project. Each project relies upon a specific artifact via the dependencies listed in a POM,
and it is a trivial process to upgrade all ten web applications to Spring 2.0 by changing your
dependency declarations.

Instead of adding the Spring 2.0 JARs to every project, you simply change some configurations in
Maven. Storing artifacts in your SCM along with your project may seem appealing, but it is
incompatible with the concept of small, modular project arrangements. Dependencies are not your
project's code, and they shouldn't be versioned in an SCM. Declare your dependencies and let Maven
take care of details like compilation and testing classpaths.

3 Alternatively, artifacts can be downloaded from a secure, internal Maven repository, which can be managed
by DevZuz Maestro. Maestro is an Apache License 2.0 distribution based on a pre-integrated Maven,
Continuum and Archiva build platform. For more information on Maestro please see:
http://www.devzuz.com/.

4 The history of how Maven communicates to the central repository has changed over time based on the
Maven client release version. From Maven version 2.0.0 through 2.0.6 there have been three central
repository URLs and a fourth URL is under discussion at this time. The following repositories have been the
central/default repository in the Maven Super POM:

 1. http://www.ibiblio.org/maven2/
 2. http://mirrors.ibiblio.org/pub/mirrors/maven2/
 3. http://repo1.maven.org/maven2/

If you are using the Maestro Developer Client from DevZuz, the Maven Super POM sets the central
repository to http://repo.mergere.com/maven2.

35

http://repo.mergere.com/maven2
http://repo1.maven.org/maven2/
http://mirrors.ibiblio.org/pub/mirrors/maven2/
http://www.ibiblio.org/maven2/
http://www.devzuz.com/
http://repo1.maven.org/maven2

Better Builds with Maven

1.3. Maven's Benefits
A successful technology takes away burden, rather than imposing it. You don't have to worry about
whether or not it's going to work; you don't have to jump through hoops trying to get it to work; it
should rarely, if ever, be a part of your thought process. Like the engine in your car or the processor
in your laptop, a useful technology just works, in the background, shielding you from complexity and
allowing you to focus on your specific task.

Maven provides such a technology for project management, and, in doing so, simplifies the process of
development. To summarize, Maven is a set of standards, Maven is a repository, Maven is a
framework, and Maven is software. Maven is also a vibrant, active open-source community that
produces software focused on project management. Using Maven is more than just downloading
another JAR file and a set of scripts, it is the adoption of a build life-cycle process that allows you to
take your software development to the next level.

36

2. Getting Started with Maven

Getting Started with Maven
This chapter covers:

• Preparing to use Maven
• Creating your first project
• Compiling application sources
• Compiling test sources and running unit tests
• Packaging an installation to your local repository
• Handling classpath resources
• Using Maven plugins

The key to performance is elegance, not
battalions of special cases. The terrible
temptation to tweak should be resisted
unless the payoff is really noticeable.

- Jon Bentley and Doug McIlroy

37

Better Builds with Maven

2.1. Preparing to Use Maven
In this chapter, it is assumed that you are a first time Maven user and have already set up Maven on
your local system. If you have not set up Maven yet, then please refer to Maven's Download and
Installation Instructions before continuing. Depending on where your machine is located, it may be
necessary to make a few more preparations for Maven to function correctly. If you are behind a
firewall, then you will have to set up Maven to understand that. To do this, create a
<user_home>/.m2/settings.xml file with the following content:

<settings>
 <proxies>
 <proxy>
 <active>true</active>
 <protocol>http</protocol>
 <host>proxy.mycompany.com</host>
 <port>8080</port>
 <username>your-username</username>
 <password>your-password</password>
 </proxy>
 </proxies>
</settings>

If Maven is already in use at your workplace, ask your administrator if there is an internal Maven
proxy. If there is an active Maven proxy running, then note the URL and let Maven know you will be
using a proxy. Create a <user_home>/.m2/settings.xml file with the following content.

<settings>
 <mirrors>
 <mirror>
 <id>maven.mycompany.com</id>
 <name>My Company's Maven Proxy</name>
 <url>http://maven.mycompany.com/maven2</url>
 <mirrorOf>central</mirrorOf>
 </mirror>
 </mirrors>
</settings>

In its optimal mode, Maven requires network access, so for now simply assume that the above
settings will work. The settings.xml file will be explained in more detail in the following chapter and you
can refer to the Maven Web site for the complete details on the settings.xml file. Now you can
perform the following basic check to ensure Maven is working correctly:

mvn -version

If Maven's version is displayed, then you should be all set to create your first Maven project.

38

http://maven.apache.org/maven-settings/settings.html
http://maven.apache.org/download.html
http://maven.apache.org/download.html

Getting Started with Maven

2.2. Creating Your First Maven Project
To create your first project, you will use Maven's Archetype mechanism. An archetype is defined as
an original pattern or model from which all other things of the same kind are made. In Maven, an
archetype is a template of a project, which is combined with some user input to produce a fully-
functional Maven project. This chapter will show you how the archetype mechanism works, but if you
would like more information about archetypes, please refer to the Introduction to Archetypes.

To create the Quick Start Maven project, execute the following:

C:\mvnbook> mvn archetype:create -DgroupId=com.mycompany.app \
-DartifactId=my-app

You will notice a few things happened when you executed this command. First, you will notice that a
directory named my-app has been created for the new project, and this directory contains your
pom.xml, which looks like the following:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.mycompany.app</groupId>
 <artifactId>my-app</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>Maven Quick Start Archetype</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

At the top level of every project is your pom.xml file. Whenever you see a directory structure, which
contains a pom.xml file, you know you are dealing with a Maven project. After the archetype
generation has completed, you will notice that the following directory structure has been created, and
that it in fact adheres to Maven's standard directory layout discussed in Chapter 1.

39

http://maven.apache.org/guides/introduction/introduction-to-archetypes.html

Better Builds with Maven

Figure 2-1: Directory structure after archetype generation

The src directory contains all of the inputs required for building, testing, documenting, and deploying
the project (source files, configuration files, various descriptors such as assembly descriptors, the site,
and so on). In this first stage you have Java source files only, but later in the chapter you will see how
the standard directory layout is employed for other project content.

Now that you have a POM, some application sources, and some test sources, you are ready to build
your project.

2.3. Compiling Application Sources
As mentioned in the introduction, at a very high level, you tell Maven what you need, in a declarative
way, in order to accomplish the desired task. Before you issue the command to compile the application
sources, note that this one simple command encompasses Maven's four foundational principles:

• Convention over configuration
• Reuse of build logic
• Declarative execution
• Coherent organization of dependencies

These principles are ingrained in all aspects of Maven, but the following analysis of the simple
compile command shows you the four principles in action and makes clear their fundamental
importance in simplifying the development of a project.

Change to the <my-app> directory. The <my-app> directory is the base directory, ${basedir}, for
the my-app project. Then, in one fell swoop, compile your application sources using the following
command:

C:\mvnbook\my-app> mvn compile

40

Getting Started with Maven

After executing this command you should see output similar to the following:

[INFO--
[INFO] Building Maven Quick Start Archetype
[INFO] task-segment: [compile]
[INFO]---
[INFO] artifact org.apache.maven.plugins:maven-resources-plugin: checking for
updates from central
...
[INFO] artifact org.apache.maven.plugins:maven-compiler-plugin: checking for
updates from central
...
[INFO] [resources:resources]
...
[INFO] [compiler:compile]
Compiling 1 source file to c:\mvnbook\my-app\target\classes
[INFO]---
[INFO] BUILD SUCCESSFUL
[INFO]---
[INFO] Total time: 3 minutes 54 seconds
[INFO] Finished at: Fri Sep 23 15:48:34 GMT-05:00 2005
[INFO] Final Memory: 2M/6M
[INFO]---

Now let's dissect what actually happened and see where Maven's four principles come into play with
the execution of this seemingly simple command.

How did Maven know where to look for sources in order to compile them? And how did Maven know
where to put the compiled classes? This is where Maven's principle of “convention over configuration”
comes into play. By default, application sources are placed in src/main/java. This default value
(though not visible in the POM above) was, in fact, inherited from the Super POM. Even the simplest
of POMs knows the default location for application sources. This means you don't have to state this
location at all in any of your POMs, if you use the default location for application sources. You can, of
course, override this default location, but there is very little reason to do so. The same holds true for
the location of the compiled classes which, by default, is target/classes.
What actually compiled the application sources? This is where Maven's second principle of “reusable
build logic” comes into play. The standard compiler plugin, along with its default configuration, is the
tool used to compile your application sources. The same build logic encapsulated in the compiler
plugin will be executed consistently across any number of projects.

Although you now know that the compiler plugin was used to compile the application sources, how
was Maven able to decide to use the compiler plugin, in the first place? You might be guessing that
there is some background process that maps a simple command to a particular plugin. In fact, there is
a form of mapping and it is called Maven's default build life cycle.

So, now you know how Maven finds application sources, what Maven uses to compile the application
sources, and how Maven invokes the compiler plugin. The next question is, how was Maven able to
retrieve the compiler plugin? After all, if you poke around the standard Maven installation, you won't
find the compiler plugin since it is not shipped with the Maven distribution. Instead, Maven downloads
plugins as they are needed.

41

Better Builds with Maven

The first time you execute this (or any other) command, Maven will download all the plugins and
related dependencies it needs to fulfill the command. From a clean installation of Maven this can take
quite a while (in the output above, it took almost 4 minutes with a broadband connection).5 The next
time you execute the same command again, because Maven already has what it needs, it won't
download anything new. Therefore, Maven will execute the command much quicker.

As you can see from the output, the compiled classes were placed in target/classes, which is
specified by the standard directory layout. If you're a keen observer you'll notice that using the
standard conventions makes the POM above very small, and eliminates the requirement for you to
explicitly tell Maven where any of your sources are, or where your output should go. By following the
standard Maven conventions you can get a lot done with very little effort!

2.4. Compiling Test Sources and Running Unit Tests
Now that you're successfully compiling your application's sources, you probably have unit tests that
you want to compile and execute as well (after all, programmers always write and execute their own
unit tests *nudge nudge, wink wink*).

Again, simply tell Maven you want to test your sources. This implies that all prerequisite phases in the
life cycle will be performed to ensure that testing will be successful. Use the following simple
command to test:

C:\mvnbook\my-app> mvn test

5 Alternatively, artifacts can be downloaded from a secure, high-performance, Maven repository that is
internal to your organization. This internal repository can be managed by DevZuz Maestro. Maestro is an
Apache License 2.0 distribution based on a pre-integrated Maven, Continuum and Archiva build platform.
For more information on Maestro please see: http://www.devzuz.com/.

42

http://www.devzuz.com/

Getting Started with Maven

After executing this command you should see output similar to the following:

[INFO]---
[INFO] Building Maven Quick Start Archetype
[INFO] task-segment: [test]
[INFO]---
[INFO] artifact org.apache.maven.plugins:maven-surefire-plugin: checking for
updates from central
...
[INFO] [resources:resources]
[INFO] [compiler:compile]
[INFO] Nothing to compile - all classes are up to date
[INFO] [resources:testResources]
[INFO] [compiler:testCompile]
Compiling 1 source file to C:\Test\Maven2\test\my-app\target\test-classes
...
[INFO] [surefire:test]
[INFO] Setting reports dir: C:\Test\Maven2\test\my-app\target/surefire-reports

 T E S T S

[surefire] Running com.mycompany.app.AppTest
[surefire] Tests run: 1, Failures: 0, Errors: 0, Time elapsed: 0 sec
Results :
[surefire] Tests run: 1, Failures: 0, Errors: 0
[INFO]---
[INFO] BUILD SUCCESSFUL
[INFO]---
[INFO] Total time: 15 seconds
[INFO] Finished at: Thu Oct 06 08:12:17 MDT 2005
[INFO] Final Memory: 2M/8M
[INFO]---

Some things to notice about the output:

• Maven downloads more dependencies this time. These are the dependencies and plugins
necessary for executing the tests (recall that it already has the dependencies it needs for
compiling and won't download them again).

• Before compiling and executing the tests, Maven compiles the main code (all these classes
are up-to-date, since we haven't changed anything since we compiled last).

If you simply want to compile your test sources (but not execute the tests), you can execute the
following command:

C:\mvnbook\my-app> mvn test-compile

However, remember that it isn't necessary to run this every time; mvn test will always run the
compile and test-compile phases first, as well as all the others defined before it.

Now that you can compile the application sources, compile the tests, and execute the tests, you'll
want to move on to the next logical step, how to package your application.

43

Better Builds with Maven

2.5. Packaging and Installation to Your Local Repository
Making a JAR file is straightforward and can be accomplished by executing the following command:

C:\mvnbook\my-app> mvn package

If you take a look at the POM for your project, you will notice the packaging element is set to jar. This
is how Maven knows to produce a JAR file from the above command (you'll read more about this
later). Take a look in the the target directory and you will see the generated JAR file.

Now, you'll want to install the artifact (the JAR file) you've generated into your local repository. It can
then be used by other projects as a dependency. The directory <user_home>/.m2/repository is
the default location of the repository.

To install, execute the following command:

C:\mvnbook\my-app> mvn install

Upon executing this command you should see the following output:

[INFO]---
[INFO] Building Maven Quick Start Archetype
[INFO] task-segment: [install]
[INFO]---
[INFO] [resources:resources]
[INFO] [compiler:compile]
Compiling 1 source file to <dir>/my-app/target/classes
[INFO] [resources:testResources]
[INFO] [compiler:testCompile]
Compiling 1 source file to <dir>/my-app/target/test-classes
[INFO] [surefire:test]
[INFO] Setting reports dir: <dir>/my-app/target/surefire-reports

 T E S T S

[surefire] Running com.mycompany.app.AppTest
[surefire] Tests run: 1, Failures: 0, Errors: 0, Time elapsed: 0.001 sec
Results :
[surefire] Tests run: 1, Failures: 0, Errors: 0
[INFO] [jar:jar]
[INFO] Building jar: <dir>/my-app/target/my-app-1.0-SNAPSHOT.jar
[INFO] [install:install]
[INFO] Installing c:\mvnbook\my-app\target\my-app-1.0-SNAPSHOT.jar to <local-
repository>\com\mycompany\app\my-app\1.0-SNAPSHOT\my-app-1.0-SNAPSHOT.jar
[INFO]---
[INFO] BUILD SUCCESSFUL
[INFO]---
[INFO] Total time: 5 seconds
[INFO] Finished at: Tue Oct 04 13:20:32 GMT-05:00 2005
[INFO] Final Memory: 3M/8M
[INFO]---

44

Getting Started with Maven

Note that the Surefire plugin (which executes the test) looks for tests contained in files with a
particular naming convention. By default, the following tests are included:

• **/*Test.java
• **/Test*.java
• **/*TestCase.java

Conversely, the following tests are excluded:
• **/Abstract*Test.java
• **/Abstract*TestCase.java

You have now completed the process for setting up, building, testing, packaging, and installing a
typical Maven project. For projects that are built with Maven, this covers the majority of tasks users
perform, and if you've noticed, everything done up to this point has been driven by an 18-line POM.

Of course, there is far more functionality available to you from Maven without requiring any additions
to the POM, as it currently stands. In contrast, to get any more functionality out of an Ant build script,
you must keep making error-prone additions.

So, what other functionality can you leverage, given Maven's re-usable build logic? With even the
simplest POM, there are a great number of Maven plugins that work out-of-the-box. This chapter will
cover one in particular, as it is one of the highly-prized features in Maven. Without any work on your
part, this POM has enough information to generate a Web site for your project! Though you will
typically want to customize your Maven site, if you're pressed for time and just need to create a basic
Web site for your project, simply execute the following command:

C:\mvnbook\my-app> mvn site

There are plenty of other stand-alone goals that can be executed as well, for example:

C:\mvnbook\my-app> mvn clean

This will remove the target directory with the old build data before starting, so it is fresh. Perhaps
you'd like to generate an IntelliJ IDEA descriptor for the project:

C:\mvnbook\my-app> mvn idea:idea

This can be run over the top of a previous IDEA project. In this case, it will update the settings rather
than starting fresh.

Or, alternatively you might like to generate an Eclipse descriptor:

C:\mvnbook\my-app> mvn eclipse:eclipse

45

Better Builds with Maven

2.6. Handling Classpath Resources
Another common use case, which requires no changes to the POM shown previously, is the
packaging of resources into a JAR file. For this common task, Maven again uses the standard
directory layout. This means that by adopting Maven's standard conventions, you can package
resources within JARs, simply by placing those resources in a standard directory structure.

In the following example, you need to add the directory src/main/resources. That is where you
place any resources you wish to package in the JAR. The rule employed by Maven is that all
directories or files placed within the src/main/resources directory are packaged in your JAR with
the exact same structure, starting at the base of the JAR.

Figure 2-2: Directory structure after adding the resources directory

You can see in the preceding example that there is a META-INF directory with an
application.properties file within that directory. If you unpacked the JAR that Maven created
you would see the following:

46

Getting Started with Maven

Figure 2-3: Directory structure of the JAR file created by Maven

The original contents of src/main/resources can be found starting at the base of the JAR and
the application.properties file is there in the META-INF directory. You will also notice some
other files like META-INF/MANIFEST.MF, as well as a pom.xml and pom.properties file. These
come standard with the creation of a JAR in Maven. You can create your own manifest if you choose,
but Maven will generate one by default if you don't. If you would like to try this example, simply create
the resources and META-INF directories and create an empty file called
application.properties inside. Then run mvn install and examine the jar file in the target
directory.

The pom.xml and pom.properties files are packaged up in the JAR so that each artifact
produced by Maven is self-describing and also allows you to utilize the metadata in your own
application, should the need arise. One simple use might be to retrieve the version of your application.
Operating on the POM file would require you to use Maven utilities, but the properties can be utilized
using the standard Java APIs.

47

Better Builds with Maven

2.6.1. Handling Test Classpath Resources
To add resources to the classpath for your unit tests, follow the same pattern as you do for adding
resources to the JAR, except place resources in the src/test/resources directory. At this point
you have a project directory structure that should look like the following:

Figure 2-4: Directory structure after adding test resources

In a unit test, you could use a simple snippet of code like the following for access to the resource
required for testing:

[...]
// Retrieve resource
InputStream is = getClass().getResourceAsStream("/test.properties");
// Do something with the resource
[...]

48

Getting Started with Maven

To override the manifest file yourself, you can use the following configuration for the maven-jar-
plugin:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <configuration>
 <archive>
 <manifestFile>META-INF/MANIFEST.MF</manifestFile>
 </archive>
 </configuration>
</plugin>

2.6.2. Filtering Classpath Resources
Sometimes a resource file will need to contain a value that can be supplied at build time only. To
accomplish this in Maven, you can filter your resource files dynamically by putting a reference to the
property that will contain the value into your resource file using the syntax ${<property name>}.
The property can be either one of the values defined in your pom.xml, a value defined in the user's
settings.xml, a property defined in an external properties file, or a system property.

To have Maven filter resources when copying, simply set filtering to true for the resource directory in
your pom.xml:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.mycompany.app</groupId>
 <artifactId>my-app</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>Maven Quick Start Archetype</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
 <build>
 <resources>
 <resource>
 <directory>src/main/resources</directory>
 <filtering>true</filtering>
 </resource>
 </resources>
 </build>
</project>

You'll notice that the build, resources, and resource elements - which weren't there before - have
been added. In addition, the POM has to explicitly state that the resources are located in the
src/main/resources directory. All of this information was previously provided as default values
and now must be added to the pom.xml to override the default value for filtering and set it to true.

49

Better Builds with Maven

To reference a property defined in your pom.xml, the property name uses the names of the XML
elements that define the value. So ${project.name} refers to the name of the project,
${project.version} refers to the version of the project, and ${project.build.finalName}
refers to the final name of the file created, when the built project is packaged. In fact, any element in
your POM is available when filtering resources.
To continue the example, create an src/main/resources/META-
INF/application.properties file, whose values will be supplied when the resource is filtered
as follows:

application.properties
application.name=${project.name}
application.version=${project.version}

With that in place, you can execute the following command (process-resources is the build life
cycle phase where the resources are copied and filtered):

mvn process-resources

The application.properties file under target/classes, which will eventually go into the
JAR looks like this:

application.properties
application.name=Maven Quick Start Archetype
application.version=1.0-SNAPSHOT

To reference a property defined in an external file, all you need to do is add a reference to this
external file in your pom.xml. First, create an external properties file and call it
src/main/filters/filter.properties:

filter.properties
my.filter.value=hello!

Next, add a reference to this new file in the pom.xml file:

<build>
 <filters>
 <filter>src/main/filters/filter.properties</filter>
 </filters>
 <resources>
 <resource>
 <directory>src/main/resources</directory>
 <filtering>true</filtering>
 </resource>
 </resources>
</build>

50

Getting Started with Maven

Then, add a reference to this property in the application.properties file as follows:

application.properties
application.name=${project.name}
application.version=${project.version}
message=${my.filter.value}

The next execution of the mvn process-resources command will put the new property value into
application.properties. As an alternative to defining the my.filter.value property in an
external file, you could have defined it in the properties section of your pom.xml and you'd get the
same effect (notice you don't need the references to src/main/filters/filter.properties
either):

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.mycompany.app</groupId>
 <artifactId>my-app</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>Maven Quick Start Archetype</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
 <build>
 <resources>
 <resource>
 <directory>src/main/resources</directory>
 <filtering>true</filtering>
 </resource>
 </resources>
 </build>
 <properties>
 <my.filter.value>hello</my.filter.value>
 </properties>
</project>

Filtering resources can also retrieve values from system properties; either the system properties built
into Java (like java.version or user.home), or properties defined on the command line using
the standard Java -D parameter. To continue the example, change the application.properties
file to look like the following:

application.properties
java.version=${java.version}
command.line.prop=${command.line.prop}

51

Better Builds with Maven

Now, when you execute the following command (note the definition of the command.line.prop
property on the command line), the application.properties file will contain the values from the
system properties.

mvn process-resources "-Dcommand.line.prop=hello again"

2.6.3. Preventing Filtering of Binary Resources
Sometimes there are classpath resources that you want to include in your JAR, but you do not want
them filtered. This is most often the case with binary resources, for example image files.

If you had a src/main/resources/images that you didn't want to be filtered, then you would
create a resource entry to handle the filtering of resources with an exclusion for the resources you
wanted unfiltered. In addition you would add another resource entry, with filtering disabled, and an
inclusion of your images directory. The build element would look like the following:

<project>
 [...]
 <build>
 <resources>
 <resource>
 <directory>src/main/resources</directory>
 <filtering>true</filtering>
 <excludes>
 <exclude>images/**</exclude>
 </excludes>
 </resource>
 <resource>
 <directory>src/main/resources</directory>
 <includes>
 <include>images/**</include>
 </includes>
 </resource>
 </resources>
 </build>
 [...]
</project>

52

Getting Started with Maven

2.7. Using Maven Plugins
As noted earlier in the chapter, to customize the build for a Maven project, you must include additional
Maven plugins, or configure parameters for the plugins already included in the build.

For example, you may want to configure the Java compiler to allow JDK 5.0 sources. This is as simple
as adding the following to your POM:

<project>
 [...]
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>2.0</version>
 <configuration>
 <source>1.5</source>
 <target>1.5</target>
 </configuration>
 </plugin>
 </plugins>
 </build>
 [...]
</project>

You'll notice that all plugins in Maven 2 look very similar to a dependency, and in some ways they are.
If it is not present on your local system, this plugin will be downloaded and installed automatically in
much the same way that a dependency would be handled. To illustrate the similarity between plugins
and dependencies, the groupId and version elements have been shown, but in most cases these
elements are not required.

If you do not specify a groupId, then Maven will default to looking for the plugin with the
org.apache.maven.plugins or the org.codehaus.mojo groupId label. You can specify an
additional groupId to search within your POM, or settings.xml..

If you do not specify a version then Maven will attempt to use the latest released version of the
specified plugin. This is often the most convenient way to use a plugin, but you may want to specify
the version of a plugin to ensure reproducibility. For the most part, plugin developers take care to
ensure that new versions of plugins are backward compatible so you are usually OK with the latest
release, but if you find something has changed - you can lock down a specific version.

The configuration element applies the given parameters to every goal from the compiler plugin. In the
above case, the compiler plugin is already used as part of the build process and this just changes the
configuration.

53

Better Builds with Maven

If you want to find out what the plugin's configuration options are, use the mvn help:describe
command. If you want to see the options for the maven-compiler-plugin shown previously, use the
following command:

mvn help:describe -DgroupId=org.apache.maven.plugins \
 -DartifactId=maven-compiler-plugin -Dfull=true

You can also find out what plugin configuration is available by using the Maven Plugin Reference
section at http://maven.apache.org/plugins/ and navigating to the plugin and goal you are using.

2.8. Summary
After reading Chapter 2, you should be up and running with Maven. If someone throws a Maven
project at you, you'll know how to use the basic features of Maven: creating a project, compiling a
project, testing a project, and packaging a project. By learning how to build a Maven project, you have
gained access to every single project using Maven. You've learned a new language and you've taken
Maven for a test drive.

You should also have some insight into how Maven handles dependencies and provides an avenue
for customization using Maven plugins. In eighteen pages, you've seen how you can use Maven to
build your project. If you were looking for just a build tool, you could stop reading this book now,
although you might want to refer to the next chapter for more information about customizing your build
to fit your project's unique needs.

If you are interested in learning how Maven builds upon the concepts described in the Introduction
and obtaining a deeper working knowledge of the tools introduced in Chapter 2, read on. The next few
chapters provide you with the how-to guidelines to customize Maven's behavior and use Maven to
manage interdependent software projects.

54

http://maven.apache.org/plugins/
http://maven.apache.org/plugins/

3. Creating Applications with Maven

Creating Applications with Maven
This chapter covers:

• Setting Up an Application Directory Structure
• Using Project Inheritance
• Managing Dependencies
• Using Snapshots
• Using Version Ranges
• Managing Plugins
• Utilizing the Build Life Cycle
• Using Profiles
• Deploying your Application
• Creating a Web Site for your Application

Walking on water and developing software
from a specification are easy if both are
frozen.

- Edward V. Berard

55

Better Builds with Maven

3.1. Introduction
In the second chapter you stepped though the basics of setting up a simple project. Now you will
delve in a little deeper, using a real-world example. In this chapter, you are going to learn about some
of Maven’s best practices and advanced uses by working on a small application to manage frequently
asked questions (FAQ). In doing so, you will be guided through the specifics of setting up an
application and managing that application's Maven structure.

The application that you are going to create is called Proficio, which is Latin for “help”. So, lets start by
discussing the ideal directory structure for Proficio.

3.2. Setting Up an Application Directory Structure
In setting up Proficio's directory structure, it is important to keep in mind that Maven emphasizes the
practice of standardized and modular builds. The natural outcome of this practice is the generation of
discrete and coherent components, which enable code reusability, a key goal for every software
development project. The guiding principle in determining how best to decompose your application is
called the Separation of Concerns (SoC).

SoC refers to the ability to identify, encapsulate, and operate on the pieces of software that are
relevant to a particular concept, goal, task, or purpose. Concerns are the primary motivation for
organizing and decomposing software into smaller, more manageable and comprehensible parts,
each of which addresses one or more specific concerns.

As such, you will see that the Proficio sample application is made up of several Maven modules:

• Proficio API: The application programming interface for Proficio, which consists of a set of
interfaces. The interfaces for the APIs of major components, like the store, are also kept here.

• Proficio CLI: The code which provides a command line interface to Proficio.

• Proficio Core: The implementation of the API.
• Proficio Model: The data model for the Proficio application, which consists of all the classes

that will be used by Proficio as a whole.
• Proficio Stores: The module which itself, houses all the store modules. Proficio has a very

simple memory-based store and a simple XStream-based store.
These are default naming conventions that Maven uses, but you are free to name your modules in
any fashion your team decides. The only real criterion to which to adhere is that your team agrees to
and uses a single naming convention. Moreover, everyone on the team needs to clearly understand
the convention, and be able to easily identify what a particular module does simply by looking at its
name.

In examining the top-level POM for Proficio, you can see in the modules element all the sub-modules
that make up the Proficio application. A module is a reference to another Maven project, which really
means a reference to another POM. This setup is typically referred to as a multi-module build and this
is how it looks in the top-level Proficio POM:

56

Creating Applications with Maven

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.devzuz.mvnbook.proficio</groupId>
 <artifactId>proficio</artifactId>
 <packaging>pom</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>Maven Proficio</name>
 <url>http://maven.apache.org</url>
 [...]
 <modules>
 <module>proficio-model</module>
 <module>proficio-api</module>
 <module>proficio-core</module>
 <module>proficio-stores</module>
 <module>proficio-cli</module>
 </modules>
 [...]
</project>

An important feature to note in the POM above is the value of the version element, which you can see
is 1.0-SNAPSHOT. For an application that has multiple modules, it is very common to release all the
sub-modules together, so it makes sense that all the modules have a common application version. It
is recommended that you specify the application version in the top-level POM and use that version
across all the modules that make up your application.

Currently there is some variance on the Maven Web site when referring to directory structures
that contain more than one Maven project. In Maven 1.x these were commonly referred to as
multi-project builds and some of this vestigial terminology carried over to the Maven 2.x
documentation, but the Maven team is trying to consistently refer to these setups as multi-
module builds now.

You should take note of the packaging element, which in this case has a value of pom. For POMs
that contain modules, the packaging type must be set to value of pom: this tells Maven that you're
going to be walking through a set of modules in a structure similar to the example being covered here.
If you were to look at Proficio's directory structure you would see the following:

Figure 3-1: Proficio directory structure

57

Better Builds with Maven

You may have noticed that the module elements in the POM match the names of the directories in the
prior Proficio directory structure. Looking at the module names is how Maven steps into the right
directory to process the respective POMs located there. Let's take a quick look at the modules and
examine the packaging for each:

Table 3-1: Module packaging types

Module Packaging

proficio-api jar
proficio-cli jar
proficio-core jar
proficio-model jar
proficio-stores pom

The packaging type in most cases is the default type of jar, but the interesting thing here is that we have
another project with a packaging type of pom, which is the proficio-stores module. If you take a
look at the POM for the proficio-stores module you will see a set of modules contained therein:

<project>
 <parent>
 <groupId>com.devzuz.mvnbook.proficio</groupId>
 <artifactId>proficio</artifactId>
 <version>1.0-SNAPSHOT</version>
 </parent>
 <modelVersion>4.0.0</modelVersion>
 <artifactId>proficio-stores</artifactId>
 <name>Maven Proficio Stores</name>
 <packaging>pom</packaging>
 <modules>
 <module>proficio-store-memory</module>
 <module>proficio-store-xstream</module>
 </modules>
</project>

Examine the directory structure inside the proficio-stores directory and you will see the
following:

Figure 3-2: Proficio-stores directory

58

Creating Applications with Maven

Whenever Maven sees a POM with a packaging of type pom Maven knows to look for a set of related
sub-modules and then process each of those modules. You can nest sets of projects like this to any
level, organizing your projects in groups according to concern, just as has been done with Proficio’s
multiple storage mechanisms, which are all placed in one directory.

3.3. Using Project Inheritance
One of the most powerful features in Maven is project inheritance. Using project inheritance allows
you to do things like state your organizational information, state your deployment information, or state
your common dependencies - all in a single place. Being the observant user, you have probably taken
a peek at all the POMs in each of the projects that make up the Proficio project and noticed the
following at the top of each of the POMs:

[...]
<parent>
 <groupId>com.devzuz.mvnbook.proficio</groupId>
 <artifactId>proficio</artifactId>
 <version>1.0-SNAPSHOT</version>
</parent>
[...]

This is the snippet in each of the POMs that lets you draw on the resources stated in the specified
top-level POM and from which you can inherit down to the level required - enabling you to add
resources where it makes sense in the hierarchy of your projects. Let's examine a case where it
makes sense to put a resource in the top-level POM, using our top-level POM for the sample Proficio
application.

If you look at the top-level POM for Proficio, you will see that in the dependencies section there is a
declaration for JUnit version 3.8.1. In this case the assumption being made is that JUnit will be used
for testing in all our child projects. So, by stating the dependency in the top-level POM once, you
never have to declare this dependency again, in any of your child POMs. The dependency is stated as
following:

<project>
 [...]
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
 [...]
</project>

59

Better Builds with Maven

What specifically happens for each child POM, is that each one inherits the dependencies section of
the top-level POM. So, if you take a look at the POM for the proficio-core module you will see
the following (Note: there is no visible dependency declaration for JUnit):

<project>
 <parent>
 <groupId>com.devzuz.mvnbook.proficio</groupId>
 <artifactId>proficio</artifactId>
 <version>1.0-SNAPSHOT</version>
 </parent>
 <modelVersion>4.0.0</modelVersion>
 <artifactId>proficio-core</artifactId>
 <packaging>jar</packaging>
 <name>Maven Proficio Core</name>
 <dependencies>
 <dependency>
 <groupId>com.devzuz.mvnbook.proficio</groupId>
 <artifactId>proficio-api</artifactId>
 </dependency>
 <dependency>
 <groupId>org.codehaus.plexus</groupId>
 <artifactId>plexus-container-default</artifactId>
 </dependency>
 </dependencies>
</project>

In order for you to see what happens during the inheritance process, you will need to use the handy
mvn help:effective-pom command. This command will show you the final result for a target
POM. After you move into the proficio-core module directory and run the command, take a look
at the resulting POM; you will see the JUnit version 3.8.1 dependency:

<project>
 [...]
 <dependencies>
 [...]
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 [...]
 </dependencies>
 [...]
</project>

60

Creating Applications with Maven

You will have noticed that the POM that you see when using the mvn
help:effective-pom is bigger than you expected. But remember from Chapter 2 that
the Super POM sits at the top of the inheritance hierarchy. So in this case, the
proficio-core project inherits from the top-level Proficio project, which in turn inherits
from the Super POM. Looking at the effective POM includes everything and is useful to
view when trying to figure out what is going on when you are having problems.

3.4. Managing Dependencies
When you are building applications you typically have a number of dependencies to manage and that
number only increases over time, making dependency management difficult to say the least. Maven's
strategy for dealing with this problem is to combine the power of project inheritance with specific
dependency management elements in the POM.

When you write applications which consist of multiple, individual projects, it is likely that some of those
projects will share common dependencies. When this happens it is critical that the same version of a
given dependency is used for all your projects, so that the final application works correctly.

You don't want, for example, to end up with multiple versions of a dependency on the classpath when
your application executes, as the results can be far from desirable. You want to make sure that all the
versions, of all your dependencies, across all of your projects are in alignment so that your testing
accurately reflects what you will deploy as your final result. In order to manage, or align, versions of
dependencies across several projects, you use the dependency management section in the top-level
POM of an application.

To illustrate how this mechanism works, let's look at the dependency management section of the
Proficio top-level POM:

<project>
 [...]
 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.devzuz.mvnbook.proficio</groupId>
 <artifactId>proficio-model</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>
 <groupId>com.devzuz.mvnbook.proficio</groupId>
 <artifactId>proficio-api</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>
 <groupId>com.devzuz.mvnbook.proficio</groupId>
 <artifactId>proficio-store-memory</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>
 <groupId>com.devzuz.mvnbook.proficio</groupId>
 <artifactId>proficio-store-xstream</artifactId>

61

Better Builds with Maven

 <version>${project.version}</version>
 </dependency>
 <dependency>
 <groupId>com.devzuz.mvnbook.proficio</groupId>
 <artifactId>proficio-core</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>
 <groupId>org.codehaus.plexus</groupId>
 <artifactId>plexus-container-default</artifactId>
 <version>1.0-alpha-9</version>
 </dependency>
 </dependencies>
 </dependencyManagement>
 [...]
</project>

Note that the ${project.version} specification is the version specified by the top-level POM's
version element, which is the application version.

As you can see within the dependency management section, we have several Proficio dependencies
and a dependency for the Plexus IoC container. There is an important distinction to be made between
the dependencies element contained within the dependencyManagment element and the top-level
dependencies element in the POM.

The dependencies element contained within the dependencyManagement element is used only to
state the preference for a version and by itself does not affect a project's dependency graph, whereas
the top-level dependencies element does affect the dependency graph. If you take a look at the POM
for the proficio-api module, you will see a single dependency declaration and that it does not
specify a version:

<project>
 [...]
 <dependencies>
 <dependency>
 <groupId>com.devzuz.mvnbook.proficio</groupId>
 <artifactId>proficio-model</artifactId>
 </dependency>
 </dependencies>
</project>

The version for this dependency is derived from the dependencyManagement element which is
inherited from the Proficio top-level POM. The dependencyManagement declares a stated
preference for the 1.0-SNAPSHOT (stated as ${project.version}) for proficio-model so
that version is injected into the dependency above, to make it complete. The dependencies stated in
the dependencyManagement only come into play when a dependency is declared without a
version.

62

Creating Applications with Maven

3.5. Using Snapshots
While you are developing an application with multiple modules, it is usually the case that each of the
modules are in flux. Your APIs might be undergoing some change or your implementations are
undergoing change and are being fleshed out, or you may be doing some refactoring. Your build
system needs to be able to deal easily with this real-time flux, and this is where Maven's concept of a
snapshot comes into play. A snapshot in Maven is an artifact that has been prepared using the most
recent sources available. If you look at the top-level POM for Proficio you will see a snapshot version
specified:

<project>
 [...]
 <version>1.0-SNAPSHOT</version>
 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.devzuz.mvnbook.proficio</groupId>
 <artifactId>proficio-model</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>
 <groupId>com.devzuz.mvnbook.proficio</groupId>
 <artifactId>proficio-api</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>
 <groupId>org.codehaus.plexus</groupId>
 <artifactId>plexus-container-default</artifactId>
 <version>1.0-alpha-9</version>
 </dependency>
 </dependencies>
 </dependencyManagement>
 [...]
</project>

Specifying a snapshot version for a dependency means that Maven will look for new versions
of that dependency without you having to manually specify a new version. Snapshot
dependencies are assumed to be changing, so Maven will attempt to update them. By default
Maven will look for snapshots on a daily basis, but you can use the -U command line option to
force the search for updates. Controlling how snapshots work will be explained in detail in
Chapter 7. When you specify a non-snapshot version of a dependency Maven will download
that dependency once and never attempt to retrieve it again.

63

Better Builds with Maven

3.6. Resolving Dependency Conflicts and Using Version Ranges
With the introduction of transitive dependencies in Maven 2.0, it became possible to simplify a POM
by including only the dependencies you need directly, and allowing Maven to calculate the full dependency
graph. However, as the graph grows, it is inevitable that two or more artifacts will require different
versions of a particular dependency. In this case, Maven must choose which version to provide.

In Maven, the version selected is the one declared “nearest” to the top of the tree - that is, Maven
selects the version that requires the least number of dependencies to be traversed. A dependency in
the POM being built will be used over anything else. However, this has limitations:

• The version chosen may not have all the features required by the other dependencies.
• If multiple versions are selected at the same depth, then the result is undefined.

While further dependency management features are scheduled for the next release of Maven at the
time of writing, there are ways to manually resolve these conflicts as the end user of a dependency,
and more importantly ways to avoid it as the author of a reusable library.

To manually resolve conflicts, you can remove the incorrect version from the tree, or you can override
both with the correct version. Removing the incorrect version requires identifying the source of the
incorrect version by running Maven with the -X flag (for more information on how to do this, see
section 6.9 in Chapter 6). For example, if you run mvn -X test on the proficio-core module,
the output will contain something similar to:

proficio-core:1.0-SNAPSHOT
 junit:3.8.1 (selected for test)
 plexus-container-default:1.0-alpha-9 (selected for compile)
 plexus-utils:1.0.4 (selected for compile)
 classworlds:1.1-alpha-2 (selected for compile)
 junit:3.8.1 (not setting scope to compile; local scope test wins)
 proficio-api:1.0-SNAPSHOT (selected for compile)
 proficio-model:1.0-SNAPSHOT (selected for compile)
 plexus-utils:1.1 (selected for compile)

It should be noted that running mvn -X test depends on other parts of the build having been
executed beforehand, so it is useful to run mvn install at the top level of the project (in the proficio
directory)to ensure that needed components are installed into the local repository.

Once the path to the version has been identified, you can exclude the dependency from the graph by
adding an exclusion to the dependency that introduced it. In this example, plexus-utils occurs
twice, and Proficio requires version 1.1 be used. To ensure this, modify the plexus-container-default
dependency in the proficio-core/pom.xml file as follows:

<dependency>
 <groupId>org.codehaus.plexus</groupId>
 <artifactId>plexus-container-default</artifactId>
 <version>1.0-alpha-9</version>
 <exclusions>
 <exclusion>

64

Creating Applications with Maven

 <groupId>org.codehaus.plexus</groupId>
 <artifactId>plexus-utils</artifactId>
 </exclusion>
 </exclusions>
</dependency>

This ensures that Maven ignores the 1.0.4 version of plexus-utils in the dependency graph, so
that the 1.1 version is used instead.

The alternate way to ensure that a particular version of a dependency is used, is to include it directly
in the POM, as follows:

<dependencies>
 <dependency>
 <groupId>org.codehaus.plexus</groupId>
 <artifactId>plexus-utils</artifactId>
 <version>1.1</version>
 <scope>runtime</scope>
 </dependency>
</dependencies>

However, this approach is not recommended unless you are producing an artifact that is bundling its
dependencies and is not used as a dependency itself (for example, a WAR file). The reason for this is
that it distorts the true dependency graph, which will accumulate if this project is reused as a
dependency itself.

You'll notice that the runtime scope is used here. This is because, in this situation, the dependency is
used only for packaging, not for compilation. In fact, if the dependency were required for compilation,
for stability it would always be declared in the current POM as a dependency - regardless of whether
another dependency introduces it.

Neither of these solutions is ideal, but it is possible to improve the quality of your own dependencies
to reduce the risk of these issues occurring with your own build artifacts. This is extremely important if
you are publishing a build, for a library or framework, that will be used widely by others. To
accomplish this, use version ranges instead.

When a version is declared as 1.1, as shown above for plexus-utils, this indicates that the
preferred version of the dependency is 1.1, but that other versions may be acceptable. Maven has no
knowledge regarding which versions will work, so in the case of a conflict with another dependency,
Maven assumes that all versions are valid and uses the “nearest dependency” technique described
previously to determine which version to use.

However, you may require a feature that was introduced in plexus-utils version 1.1. In this case,
the dependency should be specified as follows:

<dependency>
 <groupId>org.codehaus.plexus</groupId>
 <artifactId>plexus-utils</artifactId>
 <version>[1.1,)</version>
</dependency>

65

Better Builds with Maven

What this means is that, while the nearest dependency technique will still be used in the case of a
conflict, the version that is used must fit the range given. If the nearest version does not match, then
the next nearest will be tested, and so on. Finally, if none of them match, or there were no conflicts
originally, the version you are left with is [1.1,). This means that the latest version, which is greater
than or equal to 1.1, will be retrieved from the repository.

The notation used above is set notation, and table 3-2 shows some of the values that can be used.

Table 3-2: Examples of Version Ranges

Range Meaning
(,1.0] Less than or equal to 1.0
[1.2,1.3] Between 1.2 and 1.3 (inclusive)
[1.0,2.0) Greater than or equal to 1.0, but less than 2.0
[1.5,) Greater than or equal to 1.5
(,1.1),(1.1,) Any version, except 1.1

By being more specific through the use of version ranges, it is possible to make the dependency
mechanism more reliable for your builds and to reduce the number of exception cases that will be
required. However, you need to avoid being overly specific as well. For instance, if two version ranges
in a dependency graph do not intersect at all, the build will fail.
To understand how version ranges work, it is necessary to understand how versions are compared. In
figure 3-1, you can see how a version is partitioned by Maven.

As you can see, a version is broken down into five parts: the major, minor and bug fix releases, then
the qualifier and finally a build number. In the current version scheme, the snapshot (as shown above)
is a special case where the qualifier and build number are both allowed. In a regular version, you can
provide only the qualifier, or only the build number. It is intended that the qualifier indicates a version
prior to release (for example, alpha-1, beta-1, rc1). For a qualifier to be a snapshot the qualifier
must be the text “snapshot” or a time stamp. The time stamp in figure 3-1 was generated on 11-02-
2006 at 13:11:41. The build number is an increment after release to indicate patched builds.

66

Figure 3-3: Version parsing

Creating Applications with Maven

With regard to ordering, the elements are considered in sequence to determine which is newer - first
by major version, second - if the major versions were equal - by minor version, third by bug fix
version, fourth by qualifier (using string comparison), and finally, by build number. A version that
contains a qualifier is older than a version without a qualifier; for example, 1.2-beta is older than
version 1.2. A version that also contains a build number is considered newer than a version without a
build number; for example, 1.2-beta-1 is newer than 1.2-beta. In some cases, the versions will not
match this syntax. In those cases, the two versions are compared entirely as strings. Please see the
figure below for more examples of the ordering of version parsing schemes.

Figure 3-4: Version Parsing

The use of version parsing in Maven as defined here is considered the best practice.
Based on Maven's version parsing rules you may also define your own version practices.

All of these elements are considered part of the version and as such the ranges do not differentiate. If
you use the range [1.1,), and the versions 1.1 and 1.2-beta-1 exist in a referenced repository, then
1.2-beta-1 will be selected. Often this is not desired, so to avoid such a situation, you must structure
your releases accordingly, either avoiding the naming convention that would result in that behavior, or
through the use of a separate repository containing only the artifacts and versions you strictly desire.

Whether you use snapshots until the final release, or release betas as milestones along the way, you
should deploy them to a snapshot repository as is discussed in Chapter 7 of this book. This will
ensure that the beta versions are used in a range only if the project has declared the snapshot (or
development) repository explicitly.

A final note relates to how version updates are determined when a range is in use. This mechanism is
identical to that of the snapshots that you learned in section 3.6. By default, the repository is checked
once a day for updates to the versions of artifacts in use. However, this can be configured per-
repository to be on a more regular interval, or forced from the command line using the -U option for a
particular Maven execution.

67

Better Builds with Maven

If it will be configured for a particular repository, the updatePolicy value (which is in minutes) is
changed for releases. For example:

<repository>
 [...]
 <releases>
 <updatePolicy>interval:60</updatePolicy>
 </releases>
</repository>

3.7. Utilizing the Build Life Cycle
In Chapter 2 Maven was described as a framework that coordinates the execution of its plugins in a
well-defined way or process, which is actually Maven’s default build life cycle. Maven’s default build
life cycle will suffice for a great number of projects without any augmentation – but, of course,
projects will have different requirements and it is sometimes necessary to augment the default Maven
life cycle to satisfy these requirements.
For example, Proficio has a requirement to generate Java sources from a model. Maven
accommodates this requirement by allowing the declaration of a plugin, which binds itself to a
standard phase in Maven's default life cycle, the generate-sources phase.

Plugins in Maven are created with a specific task in mind, which means the plugin is bound to a
specific phase in the default life cycle, typically. In Proficio, the Modello plugin is used to generate the
Java sources for Proficio’s data model. If you look at the POM for the proficio-model you will see
the plugins element with a configuration for the Modello plugin:

<project>
 <parent>
 <groupId>com.devzuz.mvnbook.proficio</groupId>
 <artifactId>proficio</artifactId>
 <version>1.0-SNAPSHOT</version>
 </parent>
 <modelVersion>4.0.0</modelVersion>
 <artifactId>proficio-model</artifactId>
 <packaging>jar</packaging>
 <name>Proficio Model</name>
 <build>
 <plugins>
 <plugin>
 <groupId>org.codehaus.modello</groupId>
 <artifactId>modello-maven-plugin</artifactId>
 <version>1.0-alpha-5</version>
 <executions>
 <execution>
 <goals>
 <goal>java</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <version>1.0.0</version>

68

Creating Applications with Maven

 <packageWithVersion>false</packageWithVersion>
 <model>src/main/mdo/proficio.mdo</model>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

This is very similar to the declaration for the maven-compiler-plugin that you saw in Chapter 2, but here
you see an additional executions element. A plugin in Maven may have several goals, so you need to
specify which goal in the plugin you wish to run, by specifying the goal in the executions element.

69

Better Builds with Maven

3.8. Using Profiles
Profiles are Maven's way of letting you create environmental variations in the build life cycle to
accommodate things like building on different platforms, building with different JVMs, testing with
different databases, or referencing the local file system. Typically, you try to encapsulate as much as
possible in the POM to ensure that builds are portable, but sometimes you simply have to take into
consideration variation across systems and this is why profiles were introduced in Maven.

Profiles are specified using a subset of the elements available in the POM itself (plus one extra
section), and can be activated in several ways. Profiles modify the POM at build time, and are meant
to be used in complementary sets to give equivalent-but-different parameters for a set of target
environments (providing, for example, the path of the application server root in the development,
testing, and production environments).

As such, profiles can easily lead to differing build results from different members of your team.
However, used properly, you can still preserve build portability with profiles. You can define profiles in
one of the following three places:

• The Maven settings file (typically <user_home>/.m2/settings.xml)
• A file in the the same directory as the POM, called profiles.xml
• The POM itself

In terms of which profile takes precedence, the local-most profile wins. So, POM-specified profiles
override those in profiles.xml, and profiles.xml overrides those in settings.xml. This is
a pattern that is repeated throughout Maven, that local always wins, because it is assumed to be a
modification of a more general case.

settings.xml profiles have the potential to affect all builds, so they're sort of a "global" location for
profiles. profiles.xml allows you to augment a single project's build without altering the POM. And
the POM-based profiles are preferred, since these profiles are portable (they will be distributed to the
repository on deploy, and are available for subsequent builds originating from the repository or as
transitive dependencies).

Because of the portability implications, any files which are not distributed to the repository are NOT
allowed to change the fundamental build in any way. Therefore, the profiles specified in
profiles.xml and settings.xml are only allowed to define:

• repositories
• pluginRepositories
• properties

Everything else must be specified in a POM profile, or in the POM itself, or not at all. For example, if
you had a profile in settings.xml that was able to inject a new dependency, and the project you
were working on actually did depend on that settings-injected dependency in order to run, then once
that project is deployed to the repository it will never fully resolve its dependencies transitively when
asked to do so. That's because it left one of its dependencies sitting in a profile inside your
settings.xml file.

70

Creating Applications with Maven

Note: repositories, pluginRepositories, and properties can also be specified in profiles
within the POM. So, the profiles specified outside the POM are only allowed a small subset of the
options available within the POM.

You can define the following elements in the POM profile:
• repositories
• pluginRepositories
• dependencies
• plugins
• properties (not actually available in the main POM, but used behind the scenes)
• modules
• reporting
• dependencyManagement
• distributionManagement

A subset of the build element, which consists of:
• defaultGoal
• resources
• testResources
• finalName

There are several ways that you can activate profiles:

• Profiles can be specified explicitly using the -P CLI option. This option takes an argument that
contains a comma-delimited list of profile-ids. When this option is specified, no profiles other
than those specified in the option argument will be activated. For example:

mvn -Pprofile1,profile2 install
• Profiles can be activated in the Maven settings, via the activeProfiles section. This section

takes a list of activeProfile elements, each containing a profile-id. Note that you must have
defined the profiles in your settings.xml file as well. For example:

<settings>
 [...]
 <profiles>
 <profile>
 <id>profile1</id>
 [...]
 </profile>
 </profiles>
 <activeProfiles>
 <activeProfile>profile1</activeProfile>
 </activeProfiles>
 [...]
</settings>

71

Better Builds with Maven

• Profiles can be triggered automatically based on the detected state of the build environment.
These activators are specified via an activation section in the profile itself. Currently, this
detection is limited to prefix-matching of the JDK version, the presence of a system property, or
the value of a system property. Here are some examples:

<profile>
 <id>profile1</id>
 [...]
 <activation>
 <jdk>1.4</jdk>
 </activation>
</profile>

This activator will trigger the profile when the JDK's version starts with "1.4" (e.g., "1.4.0_08",
"1.4.2_07", "1.4").

<profile>
 <id>profile1</id>
 [...]
 <activation>
 <property>
 <name>debug</name>
 </property>
 </activation>
</profile>

This will activate the profile when the system property "debug" is specified with any value.

<profile>
 <id>profile1</id>
 [...]
 <activation>
 <property>
 <name>environment</name>
 <value>test</value>
 </property>
 </activation>
</profile>

This last example will activate the profile when the system property "environment" is specified
with the value "test".

Now that you are familiar with profiles, you are going to use them to create tailored assemblies: an
assembly of Proficio, which uses the memory-based store, and an assembly of Proficio, which uses
the XStream-based store. These assemblies will be created in the proficio-cli module and the
profiles used to control the creation of our tailored assemblies are defined there as well.

72

Creating Applications with Maven

If you take a look at the POM for the proficio-cli module you will see the following profile
definitions:

<project>
 [...]
 <!-- Profiles for the two assemblies to create for deployment -->
 <profiles>
 <!-- Profile which creates an assembly using the memory based store -->
 <profile>
 <id>memory</id>
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <configuration>
 <descriptors>
 <descriptor>src/main/assembly/assembly-store-memory.xml</descriptor>
 </descriptors>
 </configuration>
 </plugin>
 </plugins>
 </build>
 <activation>
 <property>
 <name>memory</name>
 </property>
 </activation>
 </profile>
 <!-- Profile which creates an assembly using the xstream based store -->
 <profile>
 <id>xstream</id>
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <configuration>
 <descriptors>
 <descriptor>src/main/assembly/assembly-store-xstream.xml</descriptor>
 </descriptors>
 </configuration>
 </plugin>
 </plugins>
 </build>
 <activation>
 <property>
 <name>xstream</name>
 </property>
 </activation>
 </profile>
 </profiles>
</project>

73

Better Builds with Maven

You can see there are two profiles: one with an id of memory and another with an id of xstream. In
each of these profiles you are configuring the assembly plugin to point at the assembly descriptor that
will create a tailored assembly. You will also notice that the profiles are activated using a system property.
It should be noted that the examples below depend on other parts of the build having been executed
beforehand, so it might be useful to run mvn install at the top level of the project to ensure that
needed components are installed into the local repository.

If you wanted to create the assembly using the memory-based store, you would execute the following:

mvn -Dmemory clean assembly:assembly

If you wanted to create the assembly using the XStream-based store, you would execute the
following:

mvn -Dxstream clean assembly:assembly

Both of the assemblies are created in the target directory and if you use the jar tvf command on
the resulting assemblies, you will see that the memory-based assembly contains the proficio-
store-memory-1.0-SNAPSHOT.jar file only, while the XStream-based store contains the
proficio-store-xstream-1.0-SNAPSHOT.jar file only. This is a very simple example, but it
illustrates how you can customize the execution of the life cycle using profiles to suit any requirement
you might have.

3.9. Deploying your Application
Now that you have an application assembly, you’ll want to share it with as many people as possible!
So, it is now time to deploy your application assembly.

Currently Maven supports several methods of deployment, including simple file-based deployment,
SSH2 deployment, SFTP deployment, FTP deployment, and external SSH deployment. In order to
deploy, you need to correctly configure your distributionManagement element in your POM,
which would typically be your top-level POM, so that all child POMs can inherit this information. Here
are some examples of how to configure your POM via the various deployment mechanisms.

3.9.1. Deploying to the File System
To deploy to the file system you would use something like the following:

<project>
 [...]
 <distributionManagement>
 <repository>
 <id>proficio-repository</id>
 <name>Proficio Repository</name>
 <url>file://${basedir}/target/deploy</url>
 </repository>
 </distributionManagement>
 [...]
</project>

74

Creating Applications with Maven

3.9.2. Deploying with SSH2
To deploy to an SSH2 server you would use something like the following:

<project>
 [...]
 <distributionManagement>
 <repository>
 <id>proficio-repository</id>
 <name>Proficio Repository</name>
 <url>scp://sshserver.yourcompany.com/deploy</url>
 </repository>
 </distributionManagement>
 [...]
</project>

3.9.3. Deploying with SFTP
To deploy to an SFTP server you would use something like the following:

<project>
 [...]
 <distributionManagement>
 <repository>
 <id>proficio-repository</id>
 <name>Proficio Repository</name>
 <url>sftp://ftpserver.yourcompany.com/deploy</url>
 </repository>
 </distributionManagement>
 [...]
</project>

75

Better Builds with Maven

3.9.4. Deploying with an External SSH
Now, the first three methods illustrated are included with Maven, so only the
distributionManagement element is required, but to use an external SSH command to deploy
you must configure not only the distributionManagement element, but also a build extension.

<project>
 [...]
 <distributionManagement>
 <repository>
 <id>proficio-repository</id>
 <name>Proficio Repository</name>
 <url>scpexe://sshserver.yourcompany.com/deploy</url>
 </repository>
 </distributionManagement>
 <build>
 <extensions>
 <extension>
 <groupId>org.apache.maven.wagon</groupId>
 <artifactId>wagon-ssh-external</artifactId>
 <version>1.0-alpha-6</version>
 </extension>
 </extensions>
 </build>
 [...]
</project>

The build extension specifies the use of the Wagon external SSH provider, which does the work of
moving your files to the remote server. Wagon is the general purpose transport mechanism used
throughout Maven.

76

Creating Applications with Maven

3.9.5. Deploying with FTP
To deploy with FTP you must also specify a build extension. To deploy to an FTP server you would
use something like the following:

<project>
 [...]
 <distributionManagement>
 <repository>
 <id>proficio-repository</id>
 <name>Proficio Repository</name>
 <url>ftp://ftpserver.yourcompany.com/deploy</url>
 </repository>
 </distributionManagement>
 <build>
 <extensions>
 <extension>
 <groupId>org.apache.maven.wagon</groupId>
 <artifactId>wagon-ftp</artifactId>
 <version>1.0-alpha-6</version>
 </extension>
 </extensions>
 </build>
 [...]
</project>

Once you have configured your POM accordingly, and you are ready to initiate deployment, simply
execute the following command:

mvn deploy

77

Better Builds with Maven

3.10. Creating a Web Site for your Application
Now that you have walked though the process of building, testing and deploying Proficio, it is time for
you to see how to create a standard Web site for an application. For applications like Proficio, it is
recommended that you create a source directory at the top-level of the directory structure to store the
resources that are used to generate the Web site. If you take a look, you will see that we have
something similarly the following:

Figure 3-5: The site directory structure

Everything that you need to generate the Web site resides within the src/site directory. Within the
src/site directory, there is a subdirectory for each of the supported documentation formats that
you are using for your site and the very important site descriptor. Maven supports a number of
different documentation formats to accommodate various needs and preferences.

Currently, the most well supported formats available are:

• The XDOC format, which is a simple XML format used widely at Apache.
• The APT format (Almost Plain Text), which is a wiki-like format that allows you to write simple,

structured documents (like this) very quickly. A full reference of the APT Format is available.
• The FML format, which is the FAQ format. A simple XML format for managing FAQs.
• The DocBook Simple format, which is a less complex version of the full DocBook format.

78

http://maven.apache.org/guides/mini/guide-apt-format.html

Creating Applications with Maven

Maven also has limited support for:

• The Twiki format, which is a popular Wiki markup format.
• The Confluence format, which is another popular Wiki markup format.
• The DocBook format.

We will look at a few of the more well-supported formats later in the chapter, but you should become
familiar with the site descriptor as it is used to:

• Configure the appearance of the banner.
• Configure the skin used for the site.
• Configure the format of the publish date.
• Configure the links displayed below the banner.
• Configure additional information to be fed into the <head/> element of the generated pages.
• Configure the menu items displayed in the navigation column.
• Configure the appearance of project reports.

If you look in the src/site directory of the Proficio application and look at the site descriptor you will
see the following:

<project name="Proficio">
 <bannerLeft>
 <name>Proficio</name>
 <href>http://maven.apache.org/</href>
 </bannerLeft>
 <bannerRight>
 <name>Proficio</name>
 <src>http://maven.apache.org/images/apache-maven project.png</src>
 </bannerRight>
 <skin>
 <groupId>org.apache.maven.skins</groupId>
 <artifactId>maven-default-skin</artifactId>
 <version>1.0-SNAPSHOT</version>
 </skin>
 <publishDate format="dd MMM yyyy" />
 <body>
 <links>
 <item name="Apache" href="http://www.apache.org/"/>
 <item name="Maven" href="http://maven.apache.org/"/>
 <item name="Continuum" href="http://maven.apache.org/continuum"/>
 </links>
 <head><meta name="faq" content="proficio"/></head>
 <menu name="Quick Links">
 <item name="Features" href="/maven-features.html"/>
 </menu>
 <menu name="About Proficio">
 <item name="What is Proficio?" href="/what-is-maven.html"/>
 </menu>
 ${reports}
 </body>
</project>

79

Better Builds with Maven

This is a fairly standard Web site descriptor, but you should know about the specifics of each of the
elements in the site descriptor:

Table 3-3: Site descriptor

Site Descriptor Element Description
bannerLeft and
bannerRight These elements take a name, href and optional src element, which can be used for

images.
skin This element looks very much like a dependency (the same mechanism is used to

retrieve the skin) and controls which skin is used for the site.
publishDate The format of the publish date is that of the SimpleDateFormat class in Java.
body/links The link elements control the references that are displayed below the banner and take

a simple name and href.
body/head The head element allows you to insert anything in the head element of generated

pages. You may wish to add metadata, or script snippets for activating tools like
Google Analytics.

body/menu The menu elements control the list of menus and their respective menu items that are
displayed in the navigation column of the site. You can have any number of menu
items each containing any number of links.

body/${reports} The inclusion of the ${reports} reference controls whether the project reports are
displayed in the web site. You might exclude ${reports} reference for a site that
consists purely of user documentation for example.

One of the most popular features of Maven are the standard reports that can be produced with little
effort. If you simply include the ${reports} reference in your site descriptor you will, by default,
have the standard project information reports generated and displayed automatically for you. The
standard project information reports consist of the following:

• Dependencies Report
• Mailing Lists Report
• Continuous Integration Report
• Source Repository Report
• Issue Tracking Report
• Project Team Report
• License

80

Creating Applications with Maven

Even though the standard reports are useful, often you will want to customize the projects reports that
are created and displayed in your Web site. The reports created and displayed are controlled in the
build/reports element in the POM. You may want to be more selective about the reports that you
generate and to do so, you need to list each report that you want to include as part of the site
generation. You do so by configuring the plugin as follows:

<project>
 [...]
 <reporting>
 [...]
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-project-info-reports-plugin</artifactId>
 <reportSets>
 <reportSet>
 <reports>
 <report>dependencies</report>
 <report>project-team</report>
 <report>mailing-list</report>
 <report>cim</report>
 <!--
 Issue tracking report will be omitted
 <report>issue-tracking</report>
 -->
 <report>license</report>
 <report>scm</report>
 </reports>
 </reportSet>
 </reportSets>
 </plugin>
 </plugins>
 [...]
 </reporting>
 [...]
</project>

Now that you have a good grasp of what formats are supported, how the site descriptor works, and
how to configure reports, it’s time to generate your project's web site. You can do so by executing the
following command:

mvn site

81

Better Builds with Maven

After executing this command, you will end up with a directory structure (generated inside the
target directory) with the generated content that looks like this:

Figure 3-6: The target directory

82

Creating Applications with Maven

If you look at the generated site with your browser, this is what you will see:

Figure 3-7: The sample generated site

If you have resources like images or PDFs that you want to be able to reference in your documents
you can use the src/site/resources to store them and when the site is generated the content of
src/site/resources will be copied to the top-level directory of the site.

If you remember the directory structure for the the sources of our site, you will have noticed the
src/site/resources directory, which contains an images directory, and as you can see in the
directory listing above, it is located within the images directory of the generated site. Keeping this
simple rule in mind, you can add any resources you wish to your site.

83

Better Builds with Maven

3.11. Summary
In this chapter you have learned how to setup a directory structure for a typical application and
learned the basics of managing the application's development with Maven. You should now have a
grasp of how project inheritance works, how to manage your application's dependencies, how to
make small modifications to Maven's build life cycle, how to deploy your application, and how to
create a simple web site for your application. You are now prepared to move on and learn about more
advanced application directory structures like the J2EE example you will see in Chapter 4, and more
advanced uses of Maven, like creating your own plugins, augmenting your site to view quality metrics,
and using Maven in a collaborative environment.

84

4. Building J2EE Applications

Building J2EE Applications
This chapter covers:

• Organizing the directory structure
• Building J2EE archives (EJB, WAR, EAR, Web Services)
• Setting up in-place Web development
• Deploying J2EE archives to a container
• Automating container start/stop

Keep your face to the sun and you will
never see the shadows.

- Helen Keller

85

Better Builds with Maven

4.1. Introduction
J2EE (or Java EE as it is now called) applications are everywhere. Whether you are using the full
J2EE stack with EJBs or only using Web applications with frameworks such as Spring or Hibernate,
it's likely that you are using J2EE in some of your projects. As a consequence the Maven community
has developed plugins to cover every aspect of building J2EE applications. This chapter will take you
through the journey of creating the build for a full-fledged J2EE application called DayTrader. You'll
learn not only how to create a J2EE build but also how to create a productive development
environment (especially for Web application development) and how to deploy J2EE modules into your
container.

4.2. Introducing the DayTrader Application
DayTrader is a real world application developed by IBM and then donated to the Apache Geronimo
project. Its goal is to serve as both a functional example of a full-stack J2EE 1.4 application and as a
test bed for running performance tests. This chapter demonstrates how to use Maven on a real
application to show how to address the complex issues related to automated builds. Through this
example, you’ll learn how to build EARs, EJBs, Web services, and Web applications. As importantly,
you’ll learn how to automate configuration and deployment of J2EE application servers.

The functional goal of the DayTrader application is to buy and sell stock, and its architecture is shown
in Figure 4-1.

Figure 4-1: Architecture of the DayTrader application

86

Building J2EE Applications

There are 4 layers in the architecture:

• The Client layer offers 3 ways to access the application: using a browser, using Web
services, and using the Quote Streamer. The Quote Streamer is a Swing GUI application
that monitors quote information about stocks in real-time as the price changes.

• The Web layer offers a view of the application for both the Web client and the Web services
client. It uses servlets and JSPs.

• The EJB layer is where the business logic is. The Trade Session is a stateless session bean
that offers the business services such as login, logout, get a stock quote, buy or sell a stock,
cancel an order, and so on. It uses container-managed persistence (CMP) entity beans for
storing the business objects (Order, Account, Holding,Quote and AccountProfile),
and Message-Driven Beans (MDB) to send purchase orders and get quote changes.

• The Data layer consists of a database used for storing the business objects and the status
of each purchase, and a JMS Server for interacting with the outside world.

A typical “buy stock” use case consists of the following steps that were shown in Figure 4-1:

1. The user gives a buy order (by using the Web client or the Web services client). This request
is handled by the Trade Session bean.

2. A new “open” order is saved in the database using the CMP Entity Beans.
3. The order is then queued for processing in the JMS Message Server.
4. The creation of the “open” order is confirmed for the user.
5. Asynchronously the order that was placed on the queue is processed and the purchase

completed. Once this happens the Trade Broker MDB is notified
6. The Trade Broker calls the Trade Session bean which in turn calls the CMP entity beans to

mark the order as “completed". The user is notified of the completed order on a subsequent
request.

4.3. Organizing the DayTrader Directory Structure
The first step to organizing the directory structure is deciding what build modules are required. The
easy answer is to follow Maven’s artifact guideline: one module = one main artifact. Thus you
simply need to figure out what artifacts you need. Looking again at Figure 4-1, you can see that the
following modules will be needed:

• A module producing an EJB which will contain all of the server-side EJBs.
• A module producing a WAR which will contain the Web application.
• A module producing a JAR that will contain the Quote Streamer client application.
• A module producing another JAR that will contain the Web services client application.

In addition you may need another module producing an EAR which will contain the EJB and WAR
produced from the other modules. This EAR will be used to easily deploy the server code into a J2EE
container.

87

Better Builds with Maven

Note that this is the minimal number of modules required. It is possible to come up with more. For
example, you may want to split the WAR module into 2 WAR modules: one for the browser client and
one for the Web services client. Best practices suggest to do this only when the need arises. If there
isn't a strong need you may find that managing several modules can be more cumbersome than
useful. On the other hand, it is important to split the modules when it is appropriate for flexibility. For
example, if you needed to physically locate the WARs in separate servlet containers to distribute the
load.

The next step is to give these modules names and map them to a directory structure. As a general
rule, it is better to find functional names for modules. However, it is usually easier to choose names
that represent a technology instead. For the DayTrader application the following names were chosen:

• ejb - the module containing the EJBs
• web - the module containing the Web application
• streamer - the module containing the client side streamer application
• wsappclient - the module containing the Web services client application
• ear - the module producing the EAR which packages the EJBs and the Web application

There are two possible layouts that you can use to organize these modules: a flat directory structure
and a nested one. Let's discuss the pros and cons of each layout.

Figure 4-2 shows these modules in a flat directory structure. It is flat because you're locating all the
modules in the same directory.

Figure 4-2: Module names and a simple flat directory structure

The top-level daytrader/pom.xml file contains the POM elements that are shared between all of
the modules. This file also contains the list of modules that Maven will build when executed from this
directory (see the Chapter 3, Creating Applications with Maven, for more details):

[...]
<modules>
 <module>ejb</module>
 <module>web</module>
 <module>streamer</module>
 <module>wsappclient</module>
 <module>ear</module>
</modules>
[...]

88

Building J2EE Applications

This is the easiest and most flexible structure to use, and is the structure used in this chapter.
However, if you have many modules in the same directory you may consider finding commonalities
between them and create subdirectories to partition them. Note that in this case the modules are still
separate, not nested within each other. For example, you might separate the client side modules from
the server side modules in the way shown in Figure 4-3.

Figure 4-3: Modules split according to a server-side vs client-side directory organization

As before, each directory level containing several modules contains a pom.xml file containing the
shared POM elements and the list of modules underneath.

The other alternative is to use a nested directory structure, as shown in Figure 4-4. In this case, the
ejb and web modules are nested in the ear module. This makes sense as the EAR artifact is
composed of the EJB and WAR artifacts produced by the ejb and web modules. Having this nested
structure clearly shows how nested modules are linked to their parent.

Figure 4-4: Nested directory structure for the EAR, EJB and Web modules

89

Better Builds with Maven

However, even though the nested directory structure seems to work quite well here, it has several
drawbacks:

• Eclipse users will have issues with this structure as Eclipse doesn’t yet support nested projects.
You’d need to consider the three modules as one project, but then you’ll be restricted in several
ways. For example, the three modules wouldn’t be able to have different natures (Web
application project, EJB project, EAR project).

• It doesn’t allow flexible packaging. For example, the ejb or web modules might depend on
a utility JAR and this JAR may be also required for some other EAR. Or the ejb module
might be producing a client EJB JAR which is not used by the EAR, but by some client-side
application.

These examples show that there are times when there is not a clear parent for a module. In
those cases using a nested directory structure should be avoided. In addition, the nested
strategy doesn’t fit very well with the Assembler role as described in the J2EE specification.

The Assembler has a pool of modules and its role is to package those modules for deployment.
Depending on the target deployment environment the Assembler may package things
differently: one EAR for one environment or two EARs for another environment where a
different set of machines are used, etc. A flat layout is more neutral with regard to assembly
and should thus be preferred.

Now that you have decided on the directory structure for the DayTrader application, you're going to
create the Maven build for each module, starting with the wsappclient module after we take care
of one more matter of business. The modules we will work with from here on will each be referring to
the parent pom.xml of the project, so before we move on to developing these sub-projects we need
to install the parent POM into our local repository so it can be further built on.

Now run mvn -N install in daytrader/ in order to install the parent POM in your local
repository and make it available to all modules:

C:\dev\m2book\code\j2ee\daytrader>mvn -N install
[INFO] Scanning for projects...
[INFO] ---
[INFO] Building DayTrader :: Performance Benchmark Sample
[INFO] task-segment: [install]
[INFO] ---
[INFO] [site:attach-descriptor]
[INFO] [install:install]
[INFO] Installing C:\dev\m2book\code\j2ee\daytrader\pom.xml to
C:\[...]\.m2\repository\org\apache\geronimo\samples\daytrader\daytrader\1.0\daytrad
er-1.0.pom.

We are now ready to continue on with developing the sub-projects!

90

http://java.sun.com/j2ee/reference/api/

Building J2EE Applications

4.4. Building a Web Services Client Project
Web Services are a part of many J2EE applications, and Maven's ability to integrate toolkits can make
them easier to add to the build process. For example, the Maven plugin called Axis Tools plugin takes
WSDL files and generates the Java files needed to interact with the Web services it defines. As the
name suggests, the plugin uses the Axis framework (http://ws.apache.org/axis/java/), and this will be
used from DayTrader’s wsappclient module. We start our building process off by visiting the
Web services portion of the build since it is a dependency of later build stages.

Axis generates the following:

Table 4-1: Axis generated classes

WSDL clause Java class(es) generated

For each entry in the type section A Java class
A holder if this type is used as an in-out/out parameter

For each port type A Java interface

For each binding A stub class

For each service A service interface
A service implementation (the locator)

For more details on the generation process, see http://ws.apache.org/axis/java/user-
guide.html#WSDL2JavaBuildingStubsSkeletonsAndDataTypesFromWSDL.

Figure 4-5 shows the directory structure of the wsappclient module. As you may notice, the WSDL
files are in src/main/wsdl, which is the default used by the Axis Tools plugin:

Figure 4-5: Directory structure of the wsappclient module

91

http://ws.apache.org/axis/java/user-guide.html#WSDL2JavaBuildingStubsSkeletonsAndDataTypesFromWSDL
http://ws.apache.org/axis/java/user-guide.html#WSDL2JavaBuildingStubsSkeletonsAndDataTypesFromWSDL
http://ws.apache.org/axis/java/

Better Builds with Maven

The location of WSDL source can be customized using the sourceDirectory property.
For example:

 [...]
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>axistools-maven-plugin</artifactId>
 <configuration>
 <sourceDirectory>
 src/main/resources/META-INF/wsdl
 </sourceDirectory>
 </configuration>
 [...]

In order to generate the Java source files from the TradeServices.wsdl file, the
wsappclient/pom.xml file must declare and configure the Axis Tools plugin:

<project>
 [...]
 <build>
 <plugins>
 [...]
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>axistools-maven-plugin</artifactId>
 <executions>
 <execution>

 <goals>
 <goal>wsdl2java</goal>

 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

Note that there's no need to define a phase in the execution element as the wsdl2java goal is
bound to the generate-sources phase by default.

At this point if you were to execute the build, it would fail. This is because after the sources are
generated, you will require a dependency on Axis and Axis JAXRPC in your pom.xml. While you
might expect the Axis Tools plugin to define this for you, it is required for two reasons: it allows you to
control what version of the dependency to use regardless of what the Axis Tools plugin was built
against, and more importantly, it allows users of your project to automatically get the dependency
transitively. Similarly, any tools that report on the POM will be able to recognize the dependency.

92

Building J2EE Applications

As before, you need to add the J2EE specifications JAR to compile the project's Java sources. Thus
the following three dependencies have been added to your POM:

 <dependencies>
 <dependency>
 <groupId>axis</groupId>
 <artifactId>axis</artifactId>
 <version>1.2</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>axis</groupId>
 <artifactId>axis-jaxrpc</artifactId>
 <version>1.2</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.apache.geronimo.specs</groupId>
 <artifactId>geronimo-j2ee_1.4_spec</artifactId>
 <version>1.0</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>

The Axis JAR depends on the Mail and Activation Sun JARs which cannot be redistributed
by Maven. Thus, they are not present on ibiblio6 and you'll need to install them manually.
Run mvn install and Maven will fail and print the installation instructions.

6 Artifacts can also be obtained from http://repo.devzuz.com/archiva/repository/maven2/ and
http://repo1.maven.org/maven2/.

93

http://repo1.maven.org/maven2/
http://repo.devzuz.com/archiva/repository/maven2/

Better Builds with Maven

After manually installing Mail and Activation, running the build with mvn install leads to:

C:\dev\m2book\code\j2ee\daytrader\wsappclient>mvn install
[...]
[INFO] [axistools:wsdl2java {execution: default}]
[INFO] about to add compile source root
[INFO] processing wsdl:
 C:\dev\m2book\code\j2ee\daytrader\wsappclient\
 src\main\wsdl\TradeServices.wsdl
[INFO] [resources:resources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:compile]
Compiling 13 source files to
C:\dev\m2book\code\j2ee\daytrader\wsappclient\target\classes
[INFO] [resources:testResources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:testCompile]
[INFO] No sources to compile
[INFO] [surefire:test]
[INFO] No tests to run.
[INFO] [jar:jar]
[INFO] Building jar: C:\dev\m2book\code\j2ee\daytrader\wsappclient\
 target\daytrader-wsappclient-1.0.jar
[INFO] [install:install]
[INFO] Installing C:\dev\m2book\code\j2ee\daytrader\wsappclient\
 target\daytrader-wsappclient-1.0.jar to
 C:\[...]\.m2\repository\org\apache\geronimo\samples\daytrader\
 daytrader-wsappclient\1.0\daytrader-wsappclient-1.0.jar
[...]

Note that the daytrader-wsappclient JAR now includes the class files compiled from the
generated source files, in addition to the sources from the standard source directory.

The Axis Tools plugin boasts several other goals including java2wsdl that is useful for generating
the server-side WSDL file from handcrafted Java classes. The generated WSDL file could then be
injected into the Web Services client module to generate client-side Java files. But that's another
story. The Axis Tools reference documentation can be found at http://mojo.codehaus.org/axistools-
maven-plugin/.

Now that we have discussed and built the Web services portion, lets visit EJBs next.

94

http://mojo.codehaus.org/axistools-maven-plugin/
http://mojo.codehaus.org/axistools-maven-plugin/

Building J2EE Applications

4.5. Building an EJB Project
Let’s create a build for the ejb module.

Figure 4-6: Directory structure for the DayTrader ejb module

Figure 4-6 shows a canonical directory structure for EJB projects:

• Runtime Java source code in src/main/java.
• Runtime classpath resources in src/main/resources. More specifically, the standard
ejb-jar.xml deployment descriptor is in src/main/resources/META-INF/ejb-
jar.xml. Any container-specific deployment descriptor should also be placed in this
directory.

• Unit tests in src/test/java and classpath resources for the unit tests in
src/test/resources. Unit tests are tests that execute in isolation from the container.
Tests that require the container to run are called integration tests and are covered at the
end of this chapter.

95

Better Builds with Maven

Now, take a look at the content of this project’s pom.xml file:

<project>
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.apache.geronimo.samples.daytrader</groupId>
 <artifactId>daytrader</artifactId>
 <version>1.0</version>
 </parent>
 <artifactId>daytrader-ejb</artifactId>
 <name>Apache Geronimo DayTrader EJB Module</name>
 <packaging>ejb</packaging>
 <description>DayTrader EJBs</description>
 <dependencies>
 <dependency>
 <groupId>org.apache.geronimo.samples.daytrader</groupId>
 <artifactId>daytrader-wsappclient</artifactId>
 <version>1.0</version>
 <scope>compile</scope>
 </dependency>
 <dependency>
 <groupId>org.apache.geronimo.specs</groupId>
 <artifactId>geronimo-j2ee_1.4_spec</artifactId>
 <version>1.0</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>commons-logging</groupId>
 <artifactId>commons-logging</artifactId>
 <version>1.0.3</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-ejb-plugin</artifactId>
 <configuration>
 <generateClient>true</generateClient>
 <clientExcludes>
 <clientExclude>**/ejb/*Bean.class</clientExclude>
 </clientExcludes>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

As you can see, you're extending a parent POM using the parent element. This is because the
DayTrader build is a multi-module build and you are gathering common POM elements in a parent
daytrader/pom.xml file. If you look through all the dependencies you should see that we are
ready to continue with building and installing this portion of the build.

96

Building J2EE Applications

The ejb/pom.xml file is is a standard POM file except for three items:

• You need to tell Maven that this project is an EJB project so that it generates an EJB JAR
when the package phase is called. This is done by specifying:

 <packaging>ejb</packaging>
• As you’re compiling J2EE code you need to have the J2EE specifications JAR in the

project’s build classpath. This is achieved by specifying a dependency element on the J2EE
JAR. You could instead specify a dependency on Sun’s J2EE JAR. However, this JAR is not
redistributable and as such cannot be found on ibiblio. Fortunately, the Geronimo project
has made the J2EE JAR available under an Apache license and this JAR can be found on
ibiblio.

You should note that you're using a provided scope instead of the default compile scope. The
reason is that this dependency will already be present in the environment (being the J2EE
application server) where your EJB will execute. You make this clear to Maven by using the
provided scope; this prevents the EAR module from including the J2EE JAR when it is
packaged. Even though this dependency is provided at runtime, it still needs to be listed in the
POM so that the code can be compiled.

• Lastly, the pom.xml contains a configuration to tell the Maven EJB plugin to generate a
Client EJB JAR file when mvn install is called. The Client will be used in a later
examples when building the web module. By default the EJB plugin does not generate the
client JAR, so you must explicitly tell it to do so:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-ejb-plugin</artifactId>
 <configuration>
 <generateClient>true</generateClient>
 <clientExcludes>
 <clientExclude>**/ejb/*Bean.class</clientExclude>
 </clientExcludes>
 </configuration>
</plugin>

The EJB plugin has a default set of files to exclude from the client EJB JAR: **/*Bean.class,
**/*CMP.class, **/*Session.class and **/package.html.

In this example, you need to override the defaults using a clientExclude element because it
happens that there are some required non-EJB files matching the default **/*Bean.class pattern
and which need to be present in the generated client EJB JAR. Thus you're specifying a pattern that
only excludes from the generated client EJB JAR all EJB implementation classes located in the ejb
package (**/ejb/*Bean.class). Note that it's also possible to specify a list of files to include
using clientInclude elements.

97

Better Builds with Maven

You’re now ready to execute the build. Relax and type mvn install:

C:\dev\m2book\code\j2ee\daytrader\ejb>mvn install
[INFO] Scanning for projects...
[INFO] ---
[INFO] Building DayTrader :: EJBs
[INFO] task-segment: [install]
[INFO] ---
[INFO] [resources:resources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:compile]
Compiling 49 source files to C:\dev\m2book\code\j2ee\daytrader\ejb\target\classes
[INFO] [resources:testResources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:testCompile]
Compiling 1 source file to C:\dev\m2book\code\j2ee\daytrader\ejb\target\test-
classes
[INFO] [surefire:test]
[INFO] Setting reports dir: C:\dev\m2book\code\j2ee\daytrader\ejb\target/surefire-
reports

 T E S T S

[surefire] Running org.apache.geronimo.samples.daytrader.FinancialUtilsTest
[surefire] Tests run: 1, Failures: 0, Errors: 0, Time elapsed: 0,02 sec
Results :
[surefire] Tests run: 1, Failures: 0, Errors: 0
[INFO] [ejb:ejb]
[INFO] Building ejb daytrader-ejb-1.0
[INFO] Building jar: C:\dev\m2book\code\j2ee\daytrader\ejb\
 target\daytrader-ejb-1.0.jar
[INFO] Building ejb client daytrader-ejb-1.0-client
[INFO] Building jar: C:\dev\m2book\code\j2ee\daytrader\ejb\
 target\daytrader-ejb-1.0-client.jar
[INFO] [install:install]
[INFO] Installing C:\dev\m2book\code\j2ee\daytrader\ejb\
 target\daytrader-ejb-1.0.jar to
 C:\[...]\.m2\repository\org\apache\geronimo\samples\
 daytrader\daytrader-ejb\1.0\daytrader-ejb-1.0.jar
[INFO] Installing C:\dev\m2book\code\j2ee\daytrader\ejb\
 target\daytrader-ejb-1.0-client.jar to
 C:\[...]\.m2\repository\org\apache\geronimo\samples\
 daytrader\daytrader-ejb\1.0\daytrader-ejb-1.0-client.jar

Maven has created both the EJB JAR and the client EJB JAR and installed them in your local
repository.

The EJB plugin has several other configuration elements that you can use to suit your exact needs.
Please refer to the EJB plugin documentation on http://maven.apache.org/plugins/maven-ejb-plugin/.

98

http://maven.apache.org/plugins/maven-ejb-plugin/

Building J2EE Applications

Early adopters of EJB3 may be interested to know how Maven supports EJB3. At the time
of writing, the EJB3 specification is still not final. There is a working prototype of an EJB3
Maven plugin, however in the future it will be added to the main EJB plugin after the
specification is finalized. Stay tuned!

99

Better Builds with Maven

4.6. Building an EJB Module With Xdoclet
If you’ve been developing a lot of EJBs (version 1 and 2) you have probably used XDoclet to generate
all of the EJB interfaces and deployment descriptors for you. Using XDoclet is easy: by adding
Javadoc annotations to your classes, you can run the XDoclet processor to generate those files for
you. When writing EJBs it means you simply have to write your EJB implementation class and
XDoclet will generate the Home interface, the Remote and Local interfaces, the container-specific
deployment descriptors, and the ejb-jar.xml descriptor.

Note that if you’re an EJB3 user, you can safely skip this section – you won’t need it!

Here’s an extract of the TradeBean session EJB using Xdoclet:

/**
 * Trade Session EJB manages all Trading services
 *
 * @ejb.bean
 * display-name="TradeEJB"
 * name="TradeEJB"
 * view-type="remote"
 * impl-class-name=
 * "org.apache.geronimo.samples.daytrader.ejb.TradeBean"
 * @ejb.home
 * generate="remote"
 * remote-class=
 * "org.apache.geronimo.samples.daytrader.ejb.TradeHome"
 * @ejb.interface
 * generate="remote"
 * remote-class=
 * "org.apache.geronimo.samples.daytrader.ejb.Trade"
 * […]
*/
public class TradeBean implements SessionBean
{
 […]
 /**
 * Queue the Order identified by orderID to be processed in a
 * One Phase commit […]
 *
 * @ejb.interface-method
 * view-type="remote"
 * @ejb.transaction
 * type="RequiresNew"
 *[…]
 */
 public void queueOrderOnePhase(Integer orderID)
 throws javax.jms.JMSException, Exception
 […]

100

http://xdoclet.sourceforge.net/

Building J2EE Applications

To demonstrate XDoclet, create a copy of the DayTrader ejb module called ejb-xdoclet. As you
can see in Figure 4-7, the project’s directory structure is the same as in Figure 4-6, but you don’t need
the ejb-jar.xml file anymore as it’s going to be generated by Xdoclet.

Figure 4-7: Directory structure for the DayTrader ejb module when using Xdoclet

The other difference is that you only need to keep the *Bean.java classes and remove all of the
Home, Local and Remote interfaces as they’ll also get generated.
Now you need to tell Maven to run XDoclet on your project. Since XDoclet generates source files, this
has to be run before the compilation phase occurs. This is achieved by using the Maven XDoclet
plugin and binding it to the generate-sources life cycle phase. Here’s the portion of the pom.xml
that configures the plugin:

<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>xdoclet-maven-plugin</artifactId>
 <executions>
 <execution>
 <phase>generate-sources</phase>
 <goals>
 <goal>xdoclet</goal>
 </goals>
 <configuration>
 <tasks>
 <ejbdoclet verbose="true" force="true" ejbSpec="2.1" destDir=
 "${project.build.directory}/generated-sources/xdoclet">
 <fileset dir="${project.build.sourceDirectory}">
 <include name="**/*Bean.java"></include>
 <include name="**/*MDB.java"></include>
 </fileset>
 <homeinterface/>
 <remoteinterface/>
 <localhomeinterface/>
 <localinterface/>
 <deploymentdescriptor
 destDir="${project.build.outputDirectory}/META-INF"/>
 </ejbdoclet>
 </tasks>
 </configuration>
 </execution>
 </executions>
</plugin>

101

http://mojo.codehaus.org/xdoclet-maven-plugin/

Better Builds with Maven

The XDoclet plugin is configured within an execution element. This is required by Maven to bind the
xdoclet goal to a phase. The plugin generates sources by default in
${project.build.directory}/generated-sources/xdoclet (you can configure this
using the generatedSourcesDirectory configuration element).

It also tells Maven that this directory contains sources that will need to be compiled when the compile
phase executes. Finally, in the tasks element you use the ejbdoclet Ant task provided by the
XDoclet project (for reference documentation see
http://xdoclet.sourceforge.net/xdoclet/ant/xdoclet/modules/ejb/EjbDocletTask.html).

In practice you can use any XDoclet task (or more generally any Ant task) within the tasks element,
but here the need is to use the ejbdoclet task to instrument the EJB class files. In addition, the
XDoclet plugin will also trigger Maven to download the XDoclet libraries from Maven’s remote
repository and add them to the execution classpath.

Executing mvn install now automatically executes XDoclet and compiles the generated files:

C:\dev\m2book\code\j2ee\daytrader\ejb-xdoclet>mvn install
[…]
[INFO] [xdoclet:xdoclet {execution: default}]
[INFO] Initializing DocletTasks!!!
[INFO] Executing tasks
10 janv. 2006 16:53:50 xdoclet.XDocletMain start
INFO: Running <homeinterface/>
Generating Home interface for
 'org.apache.geronimo.samples.daytrader.ejb.TradeBean'.
[…]
INFO: Running <remoteinterface/>
Generating Remote interface for
 'org.apache.geronimo.samples.daytrader.ejb.TradeBean'.
[…]
10 janv. 2006 16:53:50 xdoclet.XDocletMain start
INFO: Running <localhomeinterface/>
Generating Local Home interface for
 'org.apache.geronimo.samples.daytrader.ejb.AccountBean'.
[…]
10 janv. 2006 16:53:51 xdoclet.XDocletMain start
INFO: Running <localinterface/>
Generating Local interface for
 'org.apache.geronimo.samples.daytrader.ejb.AccountBean'.
[…]
10 janv. 2006 16:53:51 xdoclet.XDocletMain start
INFO: Running <deploymentdescriptor/>
Generating EJB deployment descriptor (ejb-jar.xml).
[…]
[INFO] [ejb:ejb]
[INFO] Building ejb daytrader-ejb-1.0
[…]

You might also want to try XDoclet2. It’s based on a new architecture but the tag syntax is backward-
compatible in most cases. There’s also a Maven 2 plugin for XDoclet2 at
http://xdoclet.codehaus.org/Maven2+Plugin. However, it should be noted that XDoclet2 is a work in
progress and is not yet fully mature, nor does it boast all the plugins that XDoclet1 has.

102

http://xdoclet.codehaus.org/Maven2+Plugin
http://xdoclet.codehaus.org/
http://xdoclet.sourceforge.net/xdoclet/ant/xdoclet/modules/ejb/EjbDocletTask.html

Building J2EE Applications

4.7. Deploying EJBs
Now that you know how to build an EJB project, you will learn how to deploy it. Later, you will also
learn how to test it automatically, in the Testing J2EE Applications section of this chapter. Let's
discover how you can automatically start a container and deploy your EJBs into it.

First, you will need to have Maven start the container automatically. To do so you're going to use the
Maven plugin for Cargo. Cargo is a framework for manipulating containers. It offers generic APIs
(Java, Ant, Maven 1, Maven 2, Netbeans, IntelliJ IDEA, etc.) for performing various actions on
containers such as starting, stopping, configuring them and deploying modules to them. In this
example, the JBoss container will be used.

The ejb/pom.xml file has been edited adding following Cargo plugin configuration:

<build>
 <plugins>
 [...]
 <plugin>
 <groupId>org.codehaus.cargo</groupId>
 <artifactId>cargo-maven2-plugin</artifactId>
 <configuration>
 <container>
 <containerId>jboss4x</containerId>
 <zipUrlInstaller>
 <url>http://internap.dl.sourceforge.net/
 sourceforge/jboss/jboss-4.0.2.zip</url>
 <installDir>${installDir}</installDir>
 </zipUrlInstaller>
 </container>
 </configuration>
 </plugin>
 </plugins>
</build>

If you want to debug Cargo's execution, you can use the log element to specify a file where
Cargo logs will go and you can also use the output element to specify a file where the
container's output will be dumped. For example:
<container>
 <containerId>jboss4x</containerId>
 <output>${project.build.directory}/jboss4x.log</output>
 <log>${project.build.directory}/cargo.log</log>
 [...]
See http://cargo.codehaus.org/Debugging for full details.

In the container element you tell the Cargo plugin that you want to use JBoss 4.x (containerId
element) and that you want Cargo to download the JBoss 4.0.2 distribution from the specified URL
and install it in ${installDir}. The location where Cargo should install JBoss is a user-dependent
choice and this is why the ${installDir} property was introduced. In order to build this project
you need to create a Profile where you define the ${installDir} property's value.

103

http://cargo.codehaus.org/Debugging
http://cargo.codehaus.org/

Better Builds with Maven

As explained in Chapter 3, you can define a profile in the POM, in a profiles.xml file, or in a
settings.xml file. In this case, as the content of the Profile is user-dependent you wouldn't want to
define it in the POM. Nor should the content be shared with other Maven projects at large, in a
settings.xml file. Thus the best place is to create a profiles.xml file in the ejb/ directory:

<profilesXml>
 <profiles>
 <profile>
 <id>vmassol</id>
 <properties>
 <installDir>c:/apps/cargo-installs</installDir>
 </properties>
 </profile>
 </profiles>
 <activeProfiles>
 <activeProfile>vmassol</activeProfile>
 </activeProfiles>
</profilesXml>

This sample profiles.xml file defines a profile named vmassol, activated by default and in
which the ${installDir} property points to c:/apps/cargo-installs.

It's also possible to tell Cargo that you already have JBoss installed locally. In that case
replace the zipURLInstaller element with a home element. For example:
<home>c:/apps/jboss-4.0.2</home>

That's all you need to have a working build and to deploy the EJB JAR into JBoss. The Cargo plugin
does all the work: it provides a default JBoss configuration (using port 8080 for example), it detects
that the Maven project is producing an EJB from the packaging element and it automatically deploys it
when the container is started.

Of course, the EJB JAR should first be created, so run mvn package to generate it, then start JBoss
and deploy the EJB JAR by running mvn cargo:start (or mvn package cargo:start to do it
all at once):

C:\dev\m2book\code\j2ee\daytrader\ejb>mvn cargo:start
[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'cargo'.
[INFO] ---
[INFO] Building DayTrader :: EJBs
[INFO] task-segment: [cargo:start]
[INFO] ---
[INFO] [cargo:start]
[INFO] [talledLocalContainer] Parsed JBoss version = [4.0.2]
[INFO] [talledLocalContainer] JBoss 4.0.2 starting...
[INFO] [talledLocalContainer] JBoss 4.0.2 started on port [8080]
[INFO] Press Ctrl-C to stop the container...

That's it! JBoss is running, and the EJB JAR has been deployed.

104

Building J2EE Applications

As you have told Cargo to download and install JBoss, the first time you execute
cargo:start it will take some time, especially if you are on a slow connection.
Subsequent calls will be fast as Cargo will not download JBoss again.

If the container was already started and you wanted to just deploy the EJB, you would run the
cargo:deploy goal. Finally, to stop the container call mvn cargo:stop.

Cargo has many other configuration options such as the possibility of using an existing container
installation, modifying various container parameters, deploying on a remote machine, and more.
Check the documentation at http://cargo.codehaus.org/Maven2+plugin.

4.8. Building a Web Application Project
Now, let’s focus on building the DayTrader web module. The layout is the same as for a JAR module
(see the first two chapters of this book), except that there is an additional src/main/webapp
directory for locating Web application resources such as HTML pages, JSPs, WEB-INF configuration
files, etc. (see Figure 4-8).

Figure 4-8: Directory structure for the DayTrader web module showing some Web application
resources

105

http://cargo.codehaus.org/Maven2+plugin

Better Builds with Maven

As usual everything is specified in the pom.xml file:

<project>
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.apache.geronimo.samples.daytrader</groupId>
 <artifactId>daytrader</artifactId>
 <version>1.0</version>
 </parent>
 <artifactId>daytrader-web</artifactId>
 <name>DayTrader :: Web Application</name>
 <packaging>war</packaging>
 <description>DayTrader Web</description>
 <dependencies>
 <dependency>
 <groupId>org.apache.geronimo.samples.daytrader</groupId>
 <artifactId>daytrader-ejb</artifactId>
 <version>1.0</version>
 <type>ejb-client</type>
 </dependency>
 <dependency>
 <groupId>org.apache.geronimo.specs</groupId>
 <artifactId>geronimo-j2ee_1.4_spec</artifactId>
 <version>1.0</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
</project>

You start by telling Maven that it’s building a project generating a WAR:

<packaging>war</packaging>

Next, you specify the required dependencies. The reason you are building this web module after the
ejb module is because the web module's servlets call the EJBs. Therefore, a dependency has been
added on the ejb module in web/pom.xml:

<dependency>
 <groupId>org.apache.geronimo.samples.daytrader</groupId>
 <artifactId>daytrader-ejb</artifactId>
 <version>1.0</version>
 <type>ejb-client</type>
</dependency>

Note that you’re specifying a type of ejb-client and not ejb. This is because the servlets are a
client of the EJBs. Therefore, the servlets only need the EJB client JAR in their classpath to be able to
call the EJBs. This is why you told the EJB plugin to generate a client JAR earlier on in
ejb/pom.xml.

Depending on the main EJB JAR would also work, but it’s not necessary and would increase the size
of the WAR file. It’s always cleaner to depend on the minimum set of required classes, for example to
prevent coupling.

106

Building J2EE Applications

If you add a dependency on a WAR, then the WAR you generate will be overlaid with the
content of that dependent WAR, allowing the aggregation of multiple WAR files. However,
only files not in the existing Web application will be added, and files such as web.xml
won't be merged. An alternative is to use the uberwar goal from the Cargo Maven Plugin
(see http://cargo.codehaus.org/Merging+WAR+files).

The final dependency listed is the J2EE JAR as your web module uses servlets and calls EJBs.
Again, the Geronimo J2EE specifications JAR is used with a provided scope (as seen previously
when building the EJB).

As you know, Maven 2 supports transitive dependencies. When it generates your WAR, it
recursively adds your module's dependencies, unless their scope is test or provided. This is
why we defined the J2EE JAR using a provided scope in the web module’s pom.xml.
Otherwise it would have surfaced in the WEB-INF/lib directory of the generated WAR.

The configuration is very simple because the defaults from the WAR plugin are being used. As seen
in the introduction, it’s a good practice to use the default conventions as much as possible, as it
reduces the size of the pom.xml file and reduces maintenance.

Running mvn install generates the WAR and installs it in your local repository:

C:\dev\m2book\code\j2ee\daytrader\web>mvn install
[...]
[INFO] [war:war]
[INFO] Exploding webapp...
[INFO] Copy webapp resources to
 C:\dev\m2book\code\j2ee\daytrader\web\target\daytrader-web-1.0
[INFO] Assembling webapp daytrader-web in
 C:\dev\m2book\code\j2ee\daytrader\web\target\daytrader-web-1.0
[INFO] Generating war
 C:\dev\m2book\code\j2ee\daytrader\web\target\daytrader-web-1.0.war
[INFO] Building war:
 C:\dev\m2book\code\j2ee\daytrader\web\target\daytrader-web-1.0.war
[INFO] [install:install]
[INFO] Installing
 C:\dev\m2book\code\j2ee\daytrader\web\target\daytrader-web-1.0.war
 to C:\[...]\.m2\repository\org\apache\geronimo\samples\daytrader\
 daytrader-web\1.0\daytrader-web-1.0.war

107

http://cargo.codehaus.org/Merging+WAR+files

Better Builds with Maven

Table 4-2 lists some other parameters of the WAR plugin that you may wish to configure.

Table 4-2: WAR plugin configuration properties

Configuration property Default value Description

warSourceDirectory ${basedir}/src/main/webapp Location of Web application
resources to include in the WAR.

webXml The web.xml file found in
${warSourceDirectory}/WEB-
INF/web.xml

Specify where to find the web.xml
file.

warSourceIncludes/war
SourceExcludes

All files are included Specify the files to include/exclude
from the generated WAR.

warName ${project.build.finalName} Name of the generated WAR.

For the full list, see the reference documentation for the WAR plugin at
http://maven.apache.org/plugins/maven-war-plugin/.

4.9. Improving Web Development Productivity
If you’re doing Web development you know how painful it is to have to package your code in a WAR
and redeploy it every time you want to try out a change you made to your HTML, JSP or servlet code.
Fortunately, Maven can help. There are two plugins that can alleviate this problem: the Cargo plugin
and the Jetty plugin. You’ll discover how to use the Jetty plugin in this section as you’ve already seen
how to use the Cargo plugin in a previous section.

The Jetty plugin creates a custom Jetty configuration that is wired to your source tree. The plugin is
configured by default to look for resource files in src/main/webapp, and it adds the compiled
classes in target/classes to its execution classpath. The plugin monitors the source tree for changes,
including the pom.xml file, the web.xml file, the src/main/webapp tree, the project
dependencies and the compiled classes and classpath resources in target/classes. If any change is
detected, the plugin reloads the Web application in Jetty.

A typical usage for this plugin is to develop the source code in your IDE and have the IDE configured
to compile classes in target/classes (this is the default when the Maven IDE plugins are used to set up
your IDE project). Thus any recompilation in your IDE will trigger a redeploy of your Web application
in Jetty, providing an extremely fast turnaround time for development.

108

http://maven.apache.org/plugins/maven-war-plugin/

Building J2EE Applications

Let’s try the Jetty plugin on the DayTrader web module. The following has been added to the
web/pom.xml file:

[...]
<build>
 <plugins>
 <plugin>
 <groupId>org.mortbay.jetty</groupId>
 <artifactId>maven-jetty-plugin</artifactId>
 <configuration>
 <scanIntervalSeconds>10</scanIntervalSeconds>
 </configuration>
 <dependencies>
 <dependency>
 <groupId>org.apache.geronimo.specs</groupId>
 <artifactId>geronimo-j2ee_1.4_spec</artifactId>
 <version>1.0</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
 </plugin>
[...]

The scanIntervalSeconds configuration property tells the plugin to monitor for changes every 10
seconds. The reason for the dependency on the J2EE specification JAR is because Jetty is a servlet
engine and doesn't provide the EJB specification JAR. Since the Web application earlier declared that
the specification must be provided through the provided scope, adding this dependency to the plugin
adds it to the classpath for Jetty.

109

Better Builds with Maven

You execute the Jetty plugin by typing mvn jetty:run:

C:\dev\m2book\code\j2ee\daytrader\web>mvn jetty:run
[…]
[INFO] [jetty:run]
[INFO] Configuring Jetty for project:
 Apache Geronimo DayTrader Web Module
[INFO] Webapp source directory is:
C:\dev\m2book\code\j2ee\daytrader\web\src\main\webapp
[INFO] web.xml file located at: C:\dev\m2book\code\j2ee\daytrader\
web\src\main\webapp\WEB-INF\web.xml
[INFO] Classes located at: C:\dev\m2book\code\j2ee\daytrader\
web\target\classes
[INFO] tmp dir for webapp will be
C:\dev\m2book\code\j2ee\daytrader\web\target\jetty-tmp
[INFO] Starting Jetty Server ...
[INFO] No connectors configured, using defaults:
org.mortbay.jetty.nio.SelectChannelConnector listening on 8080
with maxIdleTime 30000
0 [main] INFO org.mortbay.log - Logging to
org.slf4j.impl.SimpleLogger@1242b11 via org.mortbay.log.Slf4jLog
[INFO] Context path = /daytrader-web
[INFO] Webapp directory =
C:\dev\m2book\code\j2ee\daytrader\web\src\main\webapp
[INFO] Setting up classpath ...
[INFO] Finished setting up classpath
[INFO] Started configuring web.xml, resource base=
C:\dev\m2book\code\j2ee\daytrader\web\src\main\webapp
[INFO] Finished configuring web.xml
681 [main] INFO org.mortbay.log - Started SelectChannelConnector @ 0.0.0.0:8080
[INFO] Starting scanner at interval of 10 seconds.

As you can see, Maven pauses as Jetty is now started and may be stopped at anytime by simply
typing Ctrl-C, but then the fun examples won't work!. Your Web application has been deployed and
the plugin is waiting, listening for changes. Open a browser with the
http://localhost:8080/daytrader-web/register.jsp URL as shown in Figure 4-9 to
see the Web application running.

110

Building J2EE Applications

Figure 4-9: DayTrader JSP registration page served by the Jetty plugin

Note that the application will fail if you open a page that calls EJBs. The reason is that we have only
deployed the Web application here, but the EJBs and all the back end code has not been deployed. In
order to make it work you’d need to have your EJB container started with the DayTrader code
deployed in it. In practice it's easier to deploy a full EAR as you'll see below.
Now let’s try to modify the content of this JSP by changing the opening account balance. Edit
web/src/main/webapp/register.jsp, search for “10000” and replace it with “90000” (a much
better starting amount!):

<TD colspan="2" align="right">$ <INPUT size="20" type="text"
 name="money" value='<%= money==null ? "90000" : money %>'></TD>

Now refresh your browser (usually the F5 key) and the new value will appear as shown in Figure 4-10:

Figure 4-10: Modified registration page automatically reflecting our source change

111

Better Builds with Maven

That’s nifty, isn’t it? What happened is that the Jetty plugin realized the page was changed and it
redeployed the Web application automatically. The Jetty container automatically recompiled the JSP
when the page was refreshed.

There are various configuration parameters available for the Jetty plugin such as the ability to define
Connectors and Security realms. For example if you wanted to run Jetty on port 9090 with a user
realm defined in etc/realm.properties, you would use:

<plugin>
 <groupId>org.mortbay.jetty</groupId>
 <artifactId>maven-jetty-plugin</artifactId>
 <configuration>
 [...]
 <connectors>
 <connector implementation=
 "org.mortbay.jetty.nio.SelectChannelConnector">
 <port>9090</port>
 <maxIdleTime>60000</maxIdleTime>
 </connector>
 </connectors>
 <userRealms>
 <userRealm implementation=
 "org.mortbay.jetty.security.HashUserRealm">
 <name>Test Realm</name>
 <config>etc/realm.properties</config>
 </userRealm>
 </userRealms>
 </configuration>
</plugin>

You can also configure the context under which your Web application is deployed by using the
contextPath configuration element. By default the plugin uses the module’s artifactId from the
POM.

It's also possible to pass in a jetty.xml configuration file using the jettyConfig configuration
element. In that case anything in the jetty.xml file will be applied first. For a reference of all
configuration options see the Jetty plugin documentation at http://jetty.mortbay.org/maven-
plugin/index.html.

Now imagine that you have an awfully complex Web application generation process, that you have
custom plugins that do all sorts of transformations to Web application resource files, possibly
generating some files, and so on. The strategy above would not work as the Jetty plugin would not
know about the custom actions that need to be executed to generate a valid Web application.
Fortunately there’s a solution.

112

http://jetty.mortbay.org/jetty6/maven-plugin/index.html
http://jetty.mortbay.org/jetty6/maven-plugin/index.html

Building J2EE Applications

The WAR plugin has an exploded goal which produces an expanded Web application in the target
directory. Calling this goal ensures that the generated Web application is the correct one. The Jetty
plugin also contains two goals that can be used in this situation:

• jetty:run-war: The plugin first runs the package phase which generates the WAR file.
Then the plugin deploys the WAR file to the Jetty server and it performs hot redeployments
whenever the WAR is rebuilt (by calling mvn package from another window, for example)
or when the pom.xml file is modified.

• jetty:run-exploded: The plugin runs the package phase as with the jetty:run-war
goal. Then it deploys the unpacked Web application located in target/ (whereas the
jetty:run-war goal deploys the WAR file). The plugin then watches the following files:
WEB-INF/lib, WEB-INF/classes, WEB-INF/web.xml and pom.xml; any change to
those files results in a hot redeployment.

To demonstrate, execute mvn jetty:run-exploded goal on the web module:

C:\dev\m2book\code\j2ee\daytrader\web>mvn jetty:run-exploded
[...]
[INFO] [war:war]
[INFO] Exploding webapp...
[INFO] Copy webapp resources to
C:\dev\m2book\code\j2ee\daytrader\web\target\daytrader-web-1.0
[INFO] Assembling webapp daytrader-web in
C:\dev\m2book\code\j2ee\daytrader\web\target\daytrader-web-1.0
[INFO] Generating war C:\dev\m2book\code\j2ee\daytrader\web\target\daytrader-web-
1.0.war
[INFO] Building war: C:\dev\m2book\code\j2ee\daytrader\web\target\daytrader-web-
1.0.war
[INFO] [jetty:run-exploded]
[INFO] Configuring Jetty for project: DayTrader :: Web Application
[INFO] Starting Jetty Server ...
0 [main] INFO org.mortbay.log - Logging to org.slf4j.impl.SimpleLogger@78bc3b via
org.mortbay.log.Slf4jLog
[INFO] Context path = /daytrader-web
2214 [main] INFO org.mortbay.log - Started SelectChannelConnector @ 0.0.0.0:8080
[INFO] Scanning ...
[INFO] Scan complete at Wed Feb 15 11:59:00 CET 2006
[INFO] Starting scanner at interval of 10 seconds.

113

Better Builds with Maven

As you can see the WAR is first assembled in the target directory and the Jetty plugin is now
waiting for changes to happen. If you open another shell and run mvn package you'll see the
following in the first shell's console:

[INFO] Scan complete at Wed Feb 15 12:02:31 CET 2006
[INFO] Calling scanner listeners ...
[INFO] Stopping webapp ...
[INFO] Reconfiguring webapp ...
[INFO] Restarting webapp ...
[INFO] Restart completed.
[INFO] Listeners completed.
[INFO] Scanning ...

You're now ready for productive web development. No more excuses!

4.10. Deploying Web Applications
You have already seen how to deploy a Web application for in-place Web development in the
previous section, so now the focus will be on deploying a packaged WAR to your target container.
This example uses the Cargo Maven plugin to deploy to any container supported by Cargo (see
http://cargo.codehaus.org/Containers). This is very useful when you're developing an application and
you want to verify it works on several containers.

The web module's pom.xml file has the following added for Cargo configuration:

<plugin>
 <groupId>org.codehaus.cargo</groupId>
 <artifactId>cargo-maven2-plugin</artifactId>
 <configuration>
 <container>
 <containerId>${containerId}</containerId>
 <zipUrlInstaller>
 <url>${url}</url>
 <installDir>${installDir}</installDir>
 </zipUrlInstaller>
 </container>
 <configuration>
 <properties>
 <cargo.servlet.port>8280</cargo.servlet.port>
 </properties>
 </configuration>
 </configuration>
</plugin>

114

http://cargo.codehaus.org/Containers

Building J2EE Applications

As you can see this is a configuration similar to the one you have used to deploy your EJBs in the
Deploying EJBs section of this chapter. There are two differences though:

• Two new properties have been introduced (containerId and url) in order to make this
build snippet generic. Those properties will be defined in a Profile.

• A cargo.servlet.port element has been introduced to show how to configure the
containers to start on port 8280 instead of the default 8080 port. This is very useful if you
have containers already running your machine and you don't want to interfere with them.

As seen in the Deploying EJBs section the installDir property is user-dependent and should be
defined in a profiles.xml file. However, the containerId and url properties should be shared
for all users of the build. Thus the following profiles have been added to the web/pom.xml file:

[...]
 </build>
 <profiles>
 <profile>
 <id>jboss4x</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <properties>
 <containerId>jboss4x</containerId>
 <url>
 http://ovh.dl.sourceforge.net/sourceforge/jboss/jboss4.0.2.zip
 </url>
 </properties>
 </profile>
 <profile>
 <id>tomcat5x</id>
 <properties>
 <containerId>tomcat5x</containerId>
 <url>http://www.apache.org/dist/jakarta/tomcat-5/v5.0.30/bin/
 jakarta-tomcat-5.0.30.zip</url>
 </properties>
 </profile>
 </profiles>
</project>

You have defined two profiles: one for JBoss and one for Tomcat and the JBoss profile is defined as
active by default (using the activation element). You could add as many profiles as there are
containers you want to execute your Web application on.

115

http://ovh.dl.sourceforge.net/sourceforge/jboss/jboss4.0.2.zip

Better Builds with Maven

Executing mvn install cargo:start generates the WAR, starts the JBoss container and
deploys the WAR into it:

C:\dev\m2book\code\j2ee\daytrader\web>mvn install cargo:start
[...]
[INFO] [cargo:start]
[INFO] [talledLocalContainer] Parsed JBoss version = [4.0.2]
[INFO] [talledLocalContainer] JBoss 4.0.2 starting...
[INFO] [talledLocalContainer] JBoss 4.0.2 started on port [8280]
[INFO] Press Ctrl-C to stop the container...

To deploy the WAR using Tomcat tell Maven to execute the tomcat5x profile by typing mvn
cargo:start -Ptomcat5x:

C:\dev\m2book\code\j2ee\daytrader\web>mvn cargo:start -Ptomcat5x
[...]
[INFO] [cargo:start]
[INFO] [talledLocalContainer] Tomcat 5.0.30 starting...
[INFO] [CopyingLocalDeployer] Deploying
 [C:\dev\m2book\code\j2ee\daytrader\web\target\daytrader-web-1.0.war]
 to [C:\[...]\Temp\cargo\50866\webapps]...
[INFO] [talledLocalContainer] Tomcat 5.0.30 started on port [8280]
[INFO] Press Ctrl-C to stop the container...

This is useful for development and to test that your code deploys and works. However, once this is verified
you'll want a solution to deploy your WAR into an integration platform. One solution is to have your
container running on that integration platform and to perform a remote deployment of your WAR to it.

To deploy the DayTrader’s WAR to a running JBoss server on machine remoteserver and
executing on port 80, you would need the following Cargo plugin configuration in web/pom.xml:

 <plugin>
 <groupId>org.codehaus.cargo</groupId>
 <artifactId>cargo-maven2-plugin</artifactId>
 <configuration>
 <container>
 <containerId>jboss4x</containerId>
 <type>remote</type>
 </container>
 <configuration>
 <type>runtime</type>
 <properties>
 <cargo.hostname>${remoteServer}</cargo.hostname>
 <cargo.servlet.port>${remotePort}</cargo.servlet.port>
 <cargo.remote.username>${remoteUsername}</cargo.remote.username>
 <cargo.remote.password>${remotePassword}</cargo.remote.password>
 </properties>
 </configuration>
 </configuration>
 </plugin>

116

Building J2EE Applications

When compared to the configuration for a local deployment above, the changes are:

• A remote container and configuration type to tell Cargo that the container is remote and not
under Cargo's management,

• Several configuration properties (especially a user name and password allowed to deploy on the
remote JBoss container) to specify all the details required to perform the remote deployment. All
the properties introduced need to be declared inside the POM for those shared with other users
and in the profiles.xml file (or the settings.xml file) for those user-dependent. Note
that there was no need to specify a deployment URL as it is computed automatically by Cargo.

Check the Cargo reference documentation for all details on deployments at
http://cargo.codehaus.org/Deploying+to+a+running+container.

4.11. Building an EAR Project
You have now built all the individual modules. It’s time to package the server module artifacts (EJB
and WAR) into an EAR for convenient deployment. The ear module’s directory structure can't be any
simpler... it solely consists of a pom.xml file (see Figure 4-11).

Figure 4-11: Directory structure of the ear module

As usual the magic happens in the pom.xml file. The POM has defined that this is an EAR project by
using the packaging element:

<project>
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.apache.geronimo.samples.daytrader</groupId>
 <artifactId>daytrader</artifactId>
 <version>1.0</version>
 </parent>
 <artifactId>daytrader-ear</artifactId>
 <name>DayTrader :: Enterprise Application</name>
 <packaging>ear</packaging>
 <description>DayTrader EAR</description>

117

http://cargo.codehaus.org/Deploying+to+a+running+container

Better Builds with Maven

Next, the pom.xml file defines all of the dependencies that need to be included in the generated
EAR:

 <dependencies>
 <dependency>
 <groupId>org.apache.geronimo.samples.daytrader</groupId>
 <artifactId>daytrader-wsappclient</artifactId>
 <version>1.0</version>
 </dependency>
 <dependency>
 <groupId>org.apache.geronimo.samples.daytrader</groupId>
 <artifactId>daytrader-web</artifactId>
 <version>1.0</version>
 <type>war</type>
 </dependency>
 <dependency>
 <groupId>org.apache.geronimo.samples.daytrader</groupId>
 <artifactId>daytrader-ejb</artifactId>
 <version>1.0</version>
 <type>ejb</type>
 </dependency>
 <dependency>
 <groupId>org.apache.geronimo.samples.daytrader</groupId>
 <artifactId>daytrader-streamer</artifactId>
 <version>1.0</version>
 </dependency>
 </dependencies>

Finally, you need to configure the Maven EAR plugin by giving it the information it needs to
automatically generate the application.xml deployment descriptor file. This includes the display
name to use, the description to use, and the J2EE version to use. It is also necessary to tell the EAR
plugin which of the dependencies are Java modules, Web modules, and EJB modules. At the time of
writing, the EAR plugin supports the following module types: ejb, war, jar, ejb-client,
rar, ejb3, par, sar and wsr.

118

Building J2EE Applications

By default, all dependencies are included, with the exception of those that are optional, or those with a
scope of test or provided. However, it is often necessary to customize the inclusion of some
dependencies such as shown in this example:

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-ear-plugin</artifactId>
 <configuration>
 <displayName>Trade</displayName>
 <description>
 DayTrader Stock Trading Performance Benchmark Sample
 </description>
 <version>1.4</version>
 <modules>
 <javaModule>
 <groupId>org.apache.geronimo.samples.daytrader</groupId>
 <artifactId>daytrader-streamer</artifactId>
 <includeInApplicationXml>true</includeInApplicationXml>
 </javaModule>
 <javaModule>
 <groupId>org.apache.geronimo.samples.daytrader</groupId>
 <artifactId>daytrader-wsappclient</artifactId>
 <includeInApplicationXml>true</includeInApplicationXml>
 </javaModule>
 <webModule>
 <groupId>org.apache.geronimo.samples.daytrader</groupId>
 <artifactId>daytrader-web</artifactId>
 <contextRoot>/daytrader</contextRoot>
 </webModule>
 </modules>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

Here, the contextRoot element is used for the daytrader-web module definition to tell the EAR
plugin to use that context root in the generated application.xml file.

You should also notice that you have to specify the includeInApplicationXml element in order
to include the streamer and wsappclient libraries into the EAR. By default, only EJB client JARs
are included when specified in the Java modules list.

119

Better Builds with Maven

It is also possible to configure where the JARs' Java modules will be located inside the generated
EAR. For example, if you wanted to put the libraries inside a lib subdirectory of the EAR you would
use the bundleDir element:

<javaModule>
 <groupId>org.apache.geronimo.samples.daytrader</groupId>
 <artifactId>daytrader-streamer</artifactId>
 <includeInApplicationXml>true</includeInApplicationXml>
 <bundleDir>lib</bundleDir>
</javaModule>
<javaModule>
 <groupId>org.apache.geronimo.samples.daytrader</groupId>
 <artifactId>daytrader-wsappclient</artifactId>
 <includeInApplicationXml>true</includeInApplicationXml>
 <bundleDir>lib</bundleDir>
</javaModule>

In order not to have to repeat the bundleDir element for each Java module definition you
can instead use the defaultJavaBundleDir element:
 [...]
 <defaultBundleDir>lib</defaultBundleDir>
 <modules>
 <javaModule>
 ...
 </javaModule>
 [...]

There are some other configuration elements available in the EAR plugin which you can find out by
checking the reference documentation on http://maven.apache.org/plugins/maven-ear-plugin.

The streamer module's build is not described in this chapter because it's a standard build
generating a JAR. However the ear module depends on it and thus you'll need to have the
Streamer JAR available in your local repository before you're able to run the ear module's
build. Run mvn install in daytrader/streamer.

120

http://maven.apache.org/plugins/maven-ear-plugin

Building J2EE Applications

To generate the EAR, run mvn install:

C:\dev\m2book\code\j2ee\daytrader\ear>mvn install
[…]
[INFO] [ear:generate-application-xml]
[INFO] Generating application.xml
[INFO] [resources:resources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [ear:ear]
[INFO] Copying artifact [jar:org.apache.geronimo.samples.daytrader:
 daytrader-streamer:1.0] to [daytrader-streamer-1.0.jar]
[INFO] Copying artifact [jar:org.apache.geronimo.samples.daytrader:
 daytrader-wsappclient:1.0] to
 [daytrader-wsappclient-1.0.jar]
[INFO] Copying artifact [war:org.apache.geronimo.samples.daytrader:
 daytrader-web:1.0] to [daytrader-web-1.0.war]
[INFO] Copying artifact [ejb:org.apache.geronimo.samples.daytrader:
 daytrader-ejb:1.0] to[daytrader-ejb-1.0.jar]
[INFO] Copying artifact
 [ejb-client:org.apache.geronimo.samples.daytrader:
 daytrader-ejb:1.0] to [daytrader-ejb-1.0-client.jar]
[INFO] Could not find manifest file:
 C:\dev\m2book\code\j2ee\daytrader\ear\src\main\application\
 META-INF\MANIFEST.MF - Generating one
[INFO] Building jar: C:\dev\m2book\code\j2ee\daytrader\ear\
 target\daytrader-ear-1.0.ear
[INFO] [install:install]
[INFO] Installing C:\dev\m2book\code\j2ee\daytrader\ear\
 target\daytrader-ear-1.0.ear to
 C:\[...]\.m2\repository\org\apache\geronimo\samples\
 daytrader\daytrader-ear\1.0\daytrader-ear-1.0.ear

121

Better Builds with Maven

You should review the generated application.xml to prove that it has everything you need:

<?xml version="1.0" encoding="UTF-8"?>
<application xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/application_1_4.xsd"
 version="1.4">
 <description>
 DayTrader Stock Trading Performance Benchmark Sample
 </description>
 <display-name>Trade</display-name>
 <module>
 <java>daytrader-streamer-1.0.jar</java>
 </module>
 <module>
 <java>daytrader-wsappclient-1.0.jar</java>
 </module>
 <module>
 <web>
 <web-uri>daytrader-web-1.0.war</web-uri>
 <context-root>/daytrader</context-root>
 </web>
 </module>
 <module>
 <ejb>daytrader-ejb-1.0.jar</ejb>
 </module>
</application>

This looks good. The next section will demonstrate how to deploy this EAR into a container.

4.12. Deploying a J2EE Application
You have already learned how to deploy EJBs and WARs into a container individually. Deploying
EARs follows the same principle. In this example, you'll deploy the DayTrader EAR into Geronimo.
Geronimo is somewhat special among J2EE containers in that deploying requires calling the Deployer
tool with a deployment plan.

A plan is an XML file containing configuration information such as how to map CMP entity beans to a
specific database, how to map J2EE resources in the container, etc. Like any other container,
Geronimo also supports having this deployment descriptor located within the J2EE archives you are
deploying.

However, it is recommended that you use an external plan file so that the deployment configuration is
independent from the archives getting deployed, enabling the Geronimo plan to be modified to suit the
deployment environment.

The DayTrader application does not deploy correctly when using the JDK 5 or newer.
You'll need to use the JDK 1.4 for this section and the following.

122

Building J2EE Applications

To get started, store the deployment plan in
ear/src/main/deployment/geronimo/plan.xml, as shown on Figure 4-12.

Figure 4-12: Directory structure of the ear module showing the Geronimo deployment plan

How do you perform the deployment with Maven? One option would be to use Cargo as demonstrated
earlier in the chapter. You would need the following pom.xml configuration snippet:

<plugin>
 <groupId>org.codehaus.cargo</groupId>
 <artifactId>cargo-maven2-plugin</artifactId>
 <configuration>
 <container>
 <containerId>geronimo1x</containerId>
 <zipUrlInstaller>
 <url>http://www.apache.org/dist/geronimo/1.0/
 geronimo-tomcat-j2ee-1.0.zip</url>
 <installDir>${installDir}</installDir>
 </zipUrlInstaller>
 </container>
 <deployer>
 <deployables>
 <deployable>
 <properties>
 <plan>${basedir}/src/main/deployment/geronimo/plan.xml</plan>
 </properties>
 </deployable>
 </deployables>
 </deployer>
 </configuration>
</plugin>

123

Better Builds with Maven

However, in this section you'll learn how to use the Maven Exec plugin. This plugin can execute any
process. You'll use it to run the Geronimo Deployer tool to deploy your EAR into a running Geronimo
container. Even though it's recommended to use a specific plugin like the Cargo plugin (as described
in 4.13 Testing J2EE Applications), learning how to use the Exec plugin is useful in situations where
you want to do something slightly different, or when Cargo doesn't support the container you want to
deploy into. Modify the ear/pom.xml to configure the Exec plugin:

<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>exec-maven-plugin</artifactId>
 <configuration>
 <executable>java</executable>
 <arguments>
 <argument>-jar</argument>
 <argument>${geronimo.home}/bin/deployer.jar</argument>
 <argument>--user</argument>
 <argument>system</argument>
 <argument>--password</argument>
 <argument>manager</argument>
 <argument>deploy</argument>
 <argument>
 ${project.build.directory}/${project.build.finalName}.ear
 </argument>
 <argument>
 ${basedir}/src/main/deployment/geronimo/plan.xml
 </argument>
 </arguments>
 </configuration>
</plugin>

You may have noticed that you're using a geronimo.home property that has not been defined
anywhere. As you've seen in the EJB and WAR deployment sections above and in previous chapters
it's possible to create properties that are defined either in a properties section of the POM or in a
Profile. As the location where Geronimo is installed varies depending on the user, put the following
profile in a profiles.xml or settings.xml file:

<profiles>
 <profile>
 <id>vmassol</id>
 <properties>
 <geronimo.home>c:/apps/geronimo-1.0-tomcat</geronimo.home>
 </properties>
 </profile>
</profiles>

At execution time, the Exec plugin will transform the executable and arguments elements above into
the following command line:

java -jar c:/apps/geronimo-1.0-tomcat/bin/deployer.jar
–user system –password manager deploy
C:\dev\m2book\code\j2ee\daytrader\ear\target/daytrader-ear-1.0.ear
C:\dev\m2book\code\j2ee\daytrader\ear/src/main/deployment/geronimo/plan.xml

124

Building J2EE Applications

First, start your pre-installed version of Geronimo and run mvn exec:exec:

C:\dev\m2book\code\j2ee\daytrader\ear>mvn exec:exec
[...]
[INFO] [exec:exec]
[INFO] Deployed Trade
[INFO]
[INFO] `-> daytrader-web-1.0-SNAPSHOT.war
[INFO]
[INFO] `-> daytrader-ejb-1.0-SNAPSHOT.jar
[INFO]
[INFO] `-> daytrader-streamer-1.0-SNAPSHOT.jar
[INFO]
[INFO] `-> daytrader-wsappclient-1.0-SNAPSHOT.jar
[INFO]
[INFO] `-> TradeDataSource
[INFO]
[INFO] `-> TradeJMS

You can now access the DayTrader application by opening your browser to
http://localhost:8080/daytrader/.

You will need to make sure that the DayTrader application is not already deployed before running the
exec:exec goal or it will fail. Since Geronimo 1.0 comes with the DayTrader application bundled, you
should first stop it, by creating a new execution of the Exec plugin or run the following:

C:\apps\geronimo-1.0-tomcat\bin>deploy stop
 geronimo/daytrader-derby-tomcat/1.0/car
If you need to undeploy the DayTrader version that you've built above you'll use the
“Trade” identifier instead:
C:\apps\geronimo-1.0-tomcat\bin>deploy undeploy Trade

125

http://localhost:8080/daytrader/

Better Builds with Maven

4.13. Testing J2EE Application
In this last section you'll learn how to automate functional testing of the EAR built previously. At the
time of writing, Maven only supports integration and functional testing by creating a separate module.
To achieve this, create a functional-tests module as shown in Figure 4-13.

Figure 4-13: The new functional-tests module amongst the other DayTrader modules

This module has been added to the list of modules in the daytrader/pom.xml so that it's built along
with the others. Functional tests can take a long time to execute, so you can define a profile to build
the functional-tests module only on demand. For example, modify the daytrader/pom.xml file as
follows:

 <modules>
 <module>ejb</module>
 <module>web</module>
 <module>streamer</module>
 <module>wsappclient</module>
 <module>ear</module>
 </modules>
 <profiles>
 <profile>
 <id>functional-test</id>
 <activation>
 <property>
 <name>enableCiProfile</name>
 <value>true</value>
 </property>
 </activation>
 <modules>
 <module>functional-tests</module>
 </modules>
 </profile>
 </profiles>

For more information on the ciProfile configuration, see Chapter 7.

126

Building J2EE Applications

This means that running mvn install will not build the functional-tests module, but running mvn
install -Pfunctional-test will.

Now, take a look in the functional-tests module itself. Figure 4-1 shows how it is organized:

• Functional tests are put in src/it/java,
• Classpath resources required for the tests are put in src/it/resources (this particular

example doesn't have any resources).
• The Geronimo deployment Plan file is located in src/deployment/geronimo/plan.xml.

Figure 4-14: Directory structure for the functional-tests module

As this module does not generate an artifact, the packaging should be defined as pom. However, the
compiler and Surefire plugins are not triggered during the build life cycle of projects with a pom
packaging, so these need to be configured in the functional-tests/pom.xml file:

127

Better Builds with Maven

<project>
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.apache.geronimo.samples.daytrader</groupId>
 <artifactId>daytrader</artifactId>
 <version>1.0-SNAPSHOT</version>
 </parent>
 <artifactId>daytrader-tests</artifactId>
 <name>DayTrader :: Functional Tests</name>
 <packaging>pom</packaging>
 <description>DayTrader Functional Tests</description>
 <dependencies>
 <dependency>
 <groupId>org.apache.geronimo.samples.daytrader</groupId>
 <artifactId>daytrader-ear</artifactId>
 <version>1.0-SNAPSHOT</version>
 <type>ear</type>
 <scope>provided</scope>
 </dependency>
 [...]
 </dependencies>
 <build>
 <testSourceDirectory>src/it</testSourceDirectory>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <executions>
 <execution>
 <goals>
 <goal>testCompile</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <executions>
 <execution>
 <phase>integration-test</phase>
 <goals>
 <goal>test</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 [...]
 </plugins>
 </build>
</project>

128

Building J2EE Applications

As you can see there is also a dependency on the daytrader-ear module. This is because the
EAR artifact is needed to execute the functional tests. It also ensures that the daytrader-ear
module is built before running the functional-tests build when the full DayTrader build is executed from
the top-level in daytrader/.

For integration and functional tests, you will usually utilize a real database in a known state. To set up
your database you can use the DBUnit Java API (see http://dbunit.sourceforge.net/). However, in the
case of the DayTrader application, Derby is the default database configured in the deployment plan,
and it is started automatically by Geronimo. In addition, there's a DayTrader Web page that loads test
data into the database, so DBUnit is not needed to perform any database operations.

You may be asking how to start the container and deploy the DayTrader EAR into it. You're going to
use the Cargo plugin to start Geronimo and deploy the EAR into it.

As the Surefire plugin's test goal has been bound to the integration-test phase above, you'll bind the
Cargo plugin's start and deploy goals to the preintegration-test phase and the stop goal to the post-
integration-test phase, thus ensuring the proper order of execution.

Start by adding the Cargo dependencies to the functional-tests/pom.xml file:

<project>
 [...]
 <dependencies>
 [...]
 <dependency>
 <groupId>org.codehaus.cargo</groupId>
 <artifactId>cargo-core-uberjar</artifactId>
 <version>0.8</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.codehaus.cargo</groupId>
 <artifactId>cargo-ant</artifactId>
 <version>0.8</version>
 <scope>test</scope>
 </dependency>
 </dependencies>

129

http://dbunit.sourceforge.net/

Better Builds with Maven

Then create an execution element to bind the Cargo plugin's start and deploy goals:

 <build>
 <plugins>
 [...]
 <plugin>
 <groupId>org.codehaus.cargo</groupId>
 <artifactId>cargo-maven2-plugin</artifactId>
 <configuration>
 <wait>false</wait>
 <container>
 <containerId>geronimo1x</containerId>
 <zipUrlInstaller>
 <url>http://www.apache.org/dist/geronimo/1.0/
 geronimo-tomcat-j2ee-1.0.zip</url>
 <installDir>${installDir}</installDir>
 </zipUrlInstaller>
 </container>
 </configuration>
 <executions>
 <execution>
 <id>start-container</id>
 <phase>pre-integration-test</phase>
 <goals>
 <goal>start</goal>
 <goal>deploy</goal>
 </goals>
 <configuration>
 <deployer>
 <deployables>
 <deployable>
 <groupId>org.apache.geronimo.samples.daytrader</groupId>
 <artifactId>daytrader-ear</artifactId>
 <type>ear</type>
 <properties>
 <plan>
 ${basedir}/src/deployment/geronimo/plan.xml
 </plan>
 </properties>
 <pingURL>http://localhost:8080/daytrader</pingURL>
 </deployable>
 </deployables>
 </deployer>
 </configuration>
 </execution>
 [...]

The deployer element is used to configure the Cargo plugin's deploy goal. It is configured to deploy
the EAR using the Geronimo Plan file. In addition, a pingURL element is specified so that Cargo will
ping the specified URL till it responds, thus ensuring that the EAR is ready for servicing when the
tests execute.

130

Building J2EE Applications

Last, add an execution element to bind the Cargo plugin's stop goal to the post-integration-test phase:

 [...]
 <execution>
 <id>stop-container</id>
 <phase>post-integration-test</phase>
 <goals>
 <goal>stop</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

The functional test scaffolding is now ready. The only thing left to do is to add the tests in src/it/java.

An alternative to using Cargo's Maven plugin is to use the Cargo Java API directly from your tests,
by wrapping it in a JUnit TestSetup class to start the container in setUp() and stop it in
tearDown().

You're going to use the HttpUnit testing framework (http://httpunit.sourceforge.net/) to call a Web
page from the DayTrader application and check that it's working. Add the JUnit and HttpUnit
dependencies, with both defined using a test scope, as you're only using them for testing:

<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
</dependency>
<dependency>
 <groupId>httpunit</groupId>
 <artifactId>httpunit</artifactId>
 <version>1.6.1</version>
 <scope>test</scope>
</dependency>

131

http://httpunit.sourceforge.net/

Better Builds with Maven

Next, add a JUnit test class called
src/it/java/org/apache/geronimo/samples/daytrader/FunctionalTest.java. In
the class, the http://localhost:8080/daytrader URL is called to verify that the returned
page has a title of “DayTrader”:

package org.apache.geronimo.samples.daytrader;
import junit.framework.*;
import com.meterware.httpunit.*;
public class FunctionalTest extends TestCase
{
 public void testDisplayMainPage() throws Exception
 {
 WebConversation wc = new WebConversation();
 WebRequest request = new GetMethodWebRequest(
 "http://localhost:8080/daytrader");
 WebResponse response = wc.getResponse(request);
 assertEquals("DayTrader", response.getTitle());
 }
}

It's time to reap the benefits from your build. Change directory into functional-tests, type mvn
install and relax:

C:\dev\m2book\code\j2ee\daytrader\functional-tests>mvn install
[...]
[INFO] [cargo:start {execution: start-container}]
[INFO] [cargo:deploy {execution: start-container}]
[INFO] [surefire:test {execution: default}]
[INFO] Setting reports dir: C:\dev\m2book\code\j2ee\daytrader\functional-
tests\target/surefire-reports

 T E S T S

[surefire] Running org.apache.geronimo.samples.daytrader.FunctionalTest
[surefire] Tests run: 1, Failures: 0, Errors: 0, Time elapsed: 0,531 sec
[INFO] [cargo:stop {execution: stop-container}]

4.14. Summary
You have learned from chapters 1 and 2 how to build any type of application and this chapter has
demonstrated how to build J2EE applications. In addition you've discovered how to automate starting
and stopping containers, deploying J2EE archives and implementing functional tests. At this stage
you've pretty much become an expert Maven user! The following chapters will show even more
advanced topics such as how to write Maven plugins, how to gather project health information from
your builds, how to effectively set up Maven in a team, and more.

132

5. Developing Custom Maven Plugins

Developing Custom Maven Plugins
This chapter covers:

• How plugins execute in the Maven life cycle
• Tools and languages available to aid plugin developers
• Implementing a basic plugin using Java and Ant
• Working with dependencies, source directories, and resources from a plugin
• Attaching an artifact to the project

For a successful technology, reality must
take precedence over public relations, for
Nature cannot be fooled.

- Richard Feynman

133

Better Builds with Maven

5.1. Introduction
As described in Chapter 2, Maven is actually a platform that executes plugins within a build life cycle,
in order to perform the tasks necessary to build a project. Maven's core APIs handle the “heavy lifting”
associated with loading project definitions (POMs), resolving project dependencies, and organizing
and running plugins. The actual functional tasks, or work, of the build process are executed by the set
of plugins associated with the phases of a project's build life-cycle. This makes Maven's plugin
framework extremely important as a means of not only building a project, but also extending a
project's build to incorporate new functionality, such as integration with external tools and systems.

With most projects, the plugins provided “out of the box” by Maven are enough to satisfy the needs of
most build processes (see Appendix A for a list of default plugins used to build a typical project). Even
if a project requires a special task to be performed, it is still likely that a plugin already exists to
perform this task. Such supplemental plugins can be found at the Apache Maven project, the loosely
affiliated CodeHaus Mojo project, or even at the Web sites of third-party tools offering Maven
integration by way of their own plugins (for a list of some additional plugins available for use, refer to
the Plugin Matrix. However, if your project requires tasks that have no corresponding plugin, it may be
necessary to write a custom plugin to integrate these tasks into the build life cycle.

This chapter will focus on the task of writing custom plugins. It starts by describing fundamentals,
including a review of plugin terminology and the basic mechanics of the the Maven plugin framework.
From there, the chapter will cover the tools available to simplify the life of the plugin developer.
Finally, it will discuss the various ways that a plugin can interact with the Maven build environment and
explore some examples.

5.2. A Review of Plugin Terminology
Before delving into the details of how Maven plugins function and how they are written, let's begin by
reviewing the terminology used to describe a plugin and its role in the build.

A mojo is the basic unit of work in the Maven application. It executes an atomic build task that
represents a single step in the build process. Each mojo can leverage the rich infrastructure provided
by Maven for loading projects, resolving dependencies, injecting runtime parameter information, and
more. When a number of mojos perform related tasks, they are packaged together into a plugin.

Just like Java packages, plugins provide a grouping mechanism for multiple mojos that serve similar
functions within the build life cycle. For example, the maven-compiler-plugin incorporates two mojos:
compile and testCompile. In this case, the common theme for these tasks is the function of
compiling code. Packaging these mojos inside a single plugin provides a consistent access
mechanism for users, allowing shared configuration to be added to a single section of the POM.
Additionally, it enables these mojos to share common code more easily.

Recall that a mojo represents a single task in the build process. Correspondingly, the build process
for a project comprises a set of mojos executing in a particular, well-defined order. This ordering is
called the build life cycle, and is defined as a set of task categories, called phases. When Maven
executes a build, it traverses the phases of the life cycle in order, executing all the associated mojos
at each phase of the build.

134

http://docs.codehaus.org/display/MAVEN/Maven+Plugin+Matrix
http://mojo.codehaus.org/
http://maven.apache.org/plugins/index.html
http://maven.apache.org/plugins/index.html

Developing Custom Maven Plugins

This association of mojos to phases is called binding and is described in detail below.

Together with phase binding, the ordered execution of Maven's life cycle gives coherence to the build
process, sequencing the various build operations. While Maven does in fact define three different life-
cycles, the discussion in this chapter is restricted to the default life cycle, which is used for the
majority of build activities (the other two life cycles deal with cleaning a project's work directory and
generating a project Web site). A discussion of all three build life cycles can be found in Appendix A.

Most mojos fall into a few general categories, which correspond to the phases of the build life cycle.
As a result, mojos have a natural phase binding which determines when a task should execute within
the life cycle. Since phase bindings provide a grouping mechanism for mojos within the life cycle,
successive phases can make assumptions about what work has taken place in the previous phases.
Therefore, to ensure compatibility with other plugins, it is important to provide the appropriate phase
binding for your mojos.

While mojos usually specify a default phase binding, they can be bound to any phase in the life
cycle. Indeed, a given mojo can even be bound to the life cycle multiple times during a single build,
using the plugin executions section of the project's POM. Each execution can specify a separate
phase binding for its declared set of mojos. However, before a mojo can execute, it may still
require that certain activities have already been completed, so be sure to check the documentation
for a mojo before you re-bind it.

In some cases, a mojo may be designed to work outside the context of the build life cycle. Such
mojos may be meant to check out a project from version control, or even create the directory
structure for a new project. These mojos are meant to be used by way of direct invocation, and as
such, will not have a life-cycle phase binding at all since they don't fall into any natural category
within a typical build process. Think of these mojos as tangential to the the Maven build process,
since they often perform tasks for the POM maintainer, or aid integration with external development
tools.

5.3. Bootstrapping into Plugin Development
In addition to understanding Maven's plugin terminology, you will also need a good understanding of
how plugins are structured and how they interact with their environment. As a plugin developer, you
must understand the mechanics of life-cycle phase binding and parameter injection. Understanding
this framework will enable you to extract the Maven build-state information that each mojo requires, in
addition to determining its appropriate phase binding.

5.3.1. The Plugin Framework
Maven provides a rich framework for its plugins, including a well-defined build life cycle, dependency
management, and parameter resolution and injection. Using the life cycle, Maven also provides a
well-defined procedure for building a project's sources into a distributable archive, plus much more.
Binding to a phase of the Maven life cycle allows a mojo to make assumptions based upon what has
happened in the preceding phases. Using Maven's parameter injection infrastructure, a mojo can pick
and choose what elements of the build state it requires in order to execute its task. Together,
parameter injection and life-cycle binding form the cornerstone for all mojo development.

135

Better Builds with Maven

 Participation in the build life cycle
Most plugins consist entirely of mojos that are bound at various phases in the life cycle according to
their function in the build process. As a specific example of how plugins work together through the life
cycle, consider a very basic Maven build: a project with source code that should be compiled and
archived into a jar file for redistribution. During this build process, Maven will execute a default life
cycle for the 'jar' packaging. The 'jar' packaging definition assigns the following life-cycle phase
bindings:

Table 5-1: Life-cycle bindings for jar packaging

Life-cycle Phase Mojo Plugin

process-resources resources maven-resources-plugin
compile compile maven-compiler-plugin
process-test-resources testResources maven-resources-plugin
test-compile testCompile maven-compiler-plugin
test test maven-surefire-plugin
package jar maven-jar-plugin
install install maven-install-plugin
deploy deploy maven-deploy-plugin

When you command Maven to execute the package phase of this life cycle, at least two of the above
mojos will be invoked. First, the compile mojo from the maven-compiler-plugin will compile the
source code into binary class files in the output directory. Then, the jar mojo from the maven-jar-
plugin will harvest these class files and archive them into a jar file.

Only those mojos with tasks to perform are executed during this build. Since our hypothetical
project has no “non-code” resources, none of the mojos from the maven-resources-plugin will
be executed. Instead, each of the resource-related mojos will discover this lack of non-code
resources and simply opt out without modifying the build in any way. This is not a feature of
the framework, but a requirement of a well-designed mojo. In good mojo design, determining
when not to execute, is often as important as the modifications made during execution itself.

If this basic Maven project also includes source code for unit tests, then two additional mojos will be
triggered to handle unit testing. The testCompile mojo from the maven-compiler-plugin will compile
the test sources, then the test mojo from the maven-surefire-plugin will execute those compiled tests.
These mojos were always present in the life-cycle definition, but until now they had nothing to do and
therefore, did not execute.

Depending on the needs of a given project, many more plugins can be used to augment the default
life-cycle definition, providing functions as varied as deployment into the repository system, validation
of project content, generation of the project's Web site, and much more. Indeed, Maven's plugin
framework ensures that almost anything can be integrated into the build life cycle. This level of
extensibility is part of what makes Maven so powerful.

136

Developing Custom Maven Plugins

 Accessing build information
In order for mojos to execute effectively, they require information about the state of the current build.
This information comes in two categories:

• Project information – which is derived from the project POM, in addition to any
programmatic modifications made by previous mojo executions.

• Environment information – which is more static, and consists of the user- and machine-
level Maven settings, along with any system properties that were provided when Maven was
launched.

To gain access to the current build state, Maven allows mojos to specify parameters whose values
are extracted from the build state using expressions. At runtime, the expression associated with a
parameter is resolved against the current build state, and the resulting value is injected into the mojo,
using a language-appropriate mechanism. Using the correct parameter expressions, a mojo can keep
its dependency list to a bare minimum, thereby avoiding traversal of the entire build-state object
graph.

For example, a mojo that applies patches to the project source code will need to know where to find
the project source and patch files. This mojo would retrieve the list of source directories from the
current build information using the following expression:

${project.compileSourceRoots}

Then, assuming the patch directory is specified as mojo configuration inside the POM, the expression
to retrieve that information might look as follows:

${patchDirectory}

For more information about which mojo expressions are built into Maven, and what methods Maven
uses to extract mojo parameters from the build state, see Appendix A.

 The plugin descriptor
Though you have learned about binding mojos to life-cycle phases and resolving parameter values
using associated expressions, until now you have not seen exactly how a life-cycle binding occurs.
That is to say, how do you associate mojo parameters with their expression counterparts, and once
resolved, how do you instruct Maven to inject those values into the mojo instance? Further, how do
you instruct Maven to instantiate a given mojo in the first place?

The answers to these questions lie in the plugin descriptor. The Maven plugin descriptor is a file that
is embedded in the plugin jar archive, under the path /META-INF/maven/plugin.xml. The
descriptor is an XML file that informs Maven about the set of mojos that are contained within the
plugin. It contains information about the mojo's implementation class (or its path within the plugin jar),
the life-cycle phase to which the mojo should be bound, the set of parameters the mojo declares, and
more.

137

Better Builds with Maven

Within this descriptor, each declared mojo parameter includes information about the various
expressions used to resolve its value, whether it is editable, whether it is required for the mojo's
execution, and the mechanism for injecting the parameter value into the mojo instance. For the
complete plugin descriptor syntax, see Appendix A.

The plugin descriptor is very powerful in its ability to capture the wiring information for a wide variety
of mojos. However, this flexibility comes at a price. To accommodate the extensive variability required
from the plugin descriptor, it uses a complex syntax. Writing a plugin descriptor by hand demands that
plugin developers understand low-level details about the Maven plugin framework – details that the
developer will not use, except when configuring the descriptor. This is where Maven's plugin
development tools come into play. By abstracting many of these details away from the plugin
developer, Maven's development tools expose only relevant specifications in a format convenient for a
given plugin's implementation language.

5.3.2. Plugin Development Tools
To simplify the creation of plugin descriptors, Maven provides plugin tools to parse mojo metadata
from a variety of formats. This metadata is embedded directly in the mojo's source code where
possible, and its format is specific to the mojo's implementation language. In short, Maven's plugin-
development tools remove the burden of maintaining mojo metadata by hand. These plugin-
development tools are divided into the following two categories:

• The plugin extractor framework – which knows how to parse the metadata formats for
every language supported by Maven. This framework generates both plugin documentation
and the coveted plugin descriptor; it consists of a framework library which is complemented
by a set of provider libraries (generally, one per supported mojo language).

• The maven-plugin-plugin – which uses the plugin extractor framework, and
orchestrates the process of extracting metadata from mojo implementations, adding any
other plugin-level metadata through its own configuration (which can be modified in the
plugin's POM); the maven-plugin-plugin simply augments the standard jar life cycle
mentioned previously as a resource-generating step (this means the standard process of
turning project sources into a distributable jar archive is modified only slightly, to generate
the plugin descriptor).

Of course, the format used to write a mojo's metadata is dependent upon the language in which the
mojo is implemented. Using Java, it's a simple case of providing special javadoc annotations to
identify the properties and parameters of the mojo. For example, the clean mojo in the maven-
clean-plugin provides the following class-level javadoc annotation:

/**
 * @goal clean
 */
public class CleanMojo extends AbstractMojo

This annotation tells the plugin-development tools the mojo's name, so it can be referenced from life-
cycle mappings, POM configurations, and direct invocations (as from the command line). The clean
mojo also defines the following:

138

Developing Custom Maven Plugins

/**
 * Be verbose in the debug log-level?
 *
 * @parameter expression="${clean.verbose}" default-value="false"
 */
private boolean verbose;

Here, the annotation identifies this field as a mojo parameter. This parameter annotation also
specifies two attributes, expression and default-value. The first specifies that this parameter's default
value should be set to false. The second specifies that this parameter can also be configured from the
command line as follows:

-Dclean.verbose=false

Moreover, it specifies that this parameter can be configured from the POM using:

<configuration>
 <verbose>false</verbose>
</configuration>

You may notice that this configuration name isn't explicitly specified in the annotation; it's implicit
when using the @parameter annotation.

At first, it might seem counter-intuitive to initialize the default value of a Java field using a javadoc
annotation, especially when you could just declare the field as follows:

private boolean verbose = false;

But consider what would happen if the default value you wanted to inject contained a parameter
expression. For instance, consider the following field annotation from the resources mojo in the
maven-resources-plugin:

/**
 * Directory containing the classes.
 *
 * @parameter default-value="${project.build.outputDirectory}"
 */
private File classesDirectory;

In this case, it's impossible to initialize the Java field with the value you need, namely the
java.io.File instance, which references the output directory for the current project. When the
mojo is instantiated, this value is resolved based on the POM and injected into this field. Since the
plugin tools can also generate documentation about plugins based on these annotations, it's a good
idea to consistently specify the parameter's default value in the metadata, rather than in the Java field
initialization code.

For a complete list of javadoc annotations available for specifying mojo metadata, see
Appendix A.

Remember, these annotations are specific to mojos written in Java. If you choose to write mojos in
another language, like Ant, then the mechanism for specifying mojo metadata such as parameter
definitions will be different. However, the underlying principles remain the same.

139

Better Builds with Maven

 Choose your mojo implementation language
Through its flexible plugin descriptor format and invocation framework, Maven can accommodate
mojos written in virtually any language. For example, Maven currently supports mojos written in Java,
Ant, and Beanshell. Whatever language you use, Maven lets you select pieces of the build state to
inject as mojo parameters. This relieves you of the burden associated with traversing a large object
graph in your code, and minimizes the number of dependencies you will have on Maven's core APIs.

For many mojo developers, Java is the language of choice. Since it provides easy reuse of third-party
APIs from within your mojo, and because many Maven-built projects are written in Java, it also
provides good alignment of skill sets when developing mojos from scratch. Simple javadoc
annotations give the plugin processing plugin (the maven-plugin-plugin) the instructions
required to generate a descriptor for your mojo. Plugin parameters can be injected via either field
reflection or setter methods. Since Beanshell behaves in a similar way to standard Java, this
technique also works well for Beanshell-based mojos.

However, in certain cases you may find it easier to use Ant scripts to perform build tasks. To make
Ant scripts reusable, Maven can wrap an Ant build target and use it as if it were a mojo. This is
especially important during migration, when translating a project build from Ant to Maven (refer to
Chapter 8 for more discussion about migrating from Ant to Maven). During the early phases of such a
migration, it is often simpler to wrap existing Ant build targets with Maven mojos and bind them to
various phases in the life cycle. Ant-based plugins can consist of multiple mojos mapped to a single
build script, individual mojos each mapped to separate scripts, or any combination thereof. In these
cases, mojo mappings and parameter definitions are declared via an associated metadata file. This
pairing of the build script and accompanying metadata file follows a naming convention that allows the
maven-plugin-plugin to correlate the two files and create an appropriate plugin descriptor.

Since Java is currently the easiest language for plugin development, this chapter will focus primarily
on plugin development in this language. In addition, due to the migration value of Ant-based mojos
when converting a build to Maven, this chapter will also provide an example of basic plugin
development using Ant.

5.3.3. A Note on the Examples in this Chapter
When learning how to interact with the different aspects of Maven from within a mojo, it's important to
keep the examples clean and relatively simple. Otherwise, you risk confusing the issue at hand –
namely, the particular feature of the mojo framework currently under discussion. Therefore, the
examples in this chapter will focus on a relatively simple problem space: gathering and publishing
information about a particular build. Such information might include details about the system
environment, the specific snapshot versions of dependencies used in the build, and so on.

To facilitate these examples, you will need to work with an external project, called buildinfo, which
is used to read and write build information metadata files. This project can be found in the source
code that accompanies this book. You can install it using the following simple command:

mvn install

140

Developing Custom Maven Plugins

5.4. Developing Your First Mojo
For the purposes of this chapter, you will look at the development effort surrounding a sample project,
called Guinea Pig. This development effort will have the task of maintaining information about builds
that are deployed to the development repository, for the purposes of debugging. This information
should capture relevant details about the environment used to build the Guinea Pig artifacts, which
will be deployed to the Maven repository system. Capturing this information is key, since it can have a
critical effect on the build process and the composition of the resulting Guinea Pig artifacts. In addition
to simply capturing build-time information, you will need to disseminate the build to the rest of the
development team, eventually publishing it alongside the project's artifact in the repository for future
reference (refer to Chapter 7 for more details on how teams use Maven).

5.4.1. BuildInfo Example: Capturing Information with a Java Mojo
To begin, consider a case where the POM contains a profile, which will be triggered by the value of a
given system property – say, if the system property os.name is set to the value Linux (for more
information on profiles, refer to Chapter 3). When triggered, this profile adds a new dependency on a
Linux-specific library, which allows the build to succeed in that environment. When this profile is not
triggered, a default profile injects a dependency on a windows-specific library. For simplicity, this
dependency is used only during testing, and has no impact on transitive dependencies for users of
this project.

Here, the values of system properties used in the build are clearly very important. If you have a test
dependency which contains a defect, and this dependency is injected by one of the aforementioned
profiles, then the value of the triggering system property – and the profile it triggers – could
reasonably determine whether the build succeeds or fails. Therefore, it makes sense to publish the
value of this particular system property in a build information file so that others can see the aspects of
the environment that affected this build.

 Prerequisite: Building the buildinfo generator project
Before writing the buildinfo plugin, you must first install the buildinfo generator library into your Maven
local repository. The buildinfo plugin is a simple wrapper around this generator, providing a thin
adapter layer that allows the generator to be run from a Maven build. As a side note, this approach
encapsulates an important best practice; by separating the generator from the Maven binding code,
you are free to write any sort of adapter or front-end code you wish, and take advantage of a single,
reusable utility in many different scenarios.

To build the buildinfo generator library, perform the following steps7:

cd buildinfo

mvn install

7 The README.txt file in the Code_Ch05.zip file provides sequential instructions for building the code.

141

Better Builds with Maven

 Using the archetype plugin to generate a stub plugin project
Now that the buildinfo generator library has been installed, it's helpful to jump-start the plugin-writing
process by using Maven's archetype plugin to create a simple stub project from a standard plugin-
project template. Once you have the plugin's project structure in place, writing your custom mojo is
simple. To generate a stub plugin project for the buildinfo plugin, simply execute the following
from the top level directory of the chapter 5 sample code:

mvn archetype:create -DgroupId=com.devzuz.mvnbook.plugins \
-DartifactId=maven-buildinfo-plugin \
-DarchetypeArtifactId=maven-archetype-mojo

When you run this command, you're likely to see a warning message saying
“${project.build.directory} is not a valid reference”. This is a result of the Velocity
template, used to generate the plugin source code, interacting with Maven's own plugin
parameter annotations. This message does not indicate a problem.

This will create a project with the standard layout under a new subdirectory called maven-
buildinfo-plugin within the current working directory. Inside, you'll find a basic POM and a
sample mojo. For the purposes of this plugin, you will need to modify the POM as follows:

• Change the name element to Maven BuildInfo Plugin.
• Remove the url element, since this plugin doesn't currently have an associated Web site.

You will modify the POM again later, as you know more about your mojos' dependencies. However,
this simple version will suffice for now.

Finally, since you will be creating your own mojo from scratch, you should remove the sample mojo. It
can be found in the plugin's project directory, under the following path:

src\main\java\com\devzuz\mvnbook\plugins\MyMojo.java.

 The mojo
You can handle this scenario using the following, fairly simple Java-based mojo:

[...]
/**

 * Write the environment information for the current build execution
 * to an XML file.
 * @goal extract
 * @phase package
 * @requiresDependencyResolution test
 *
 */
public class WriteBuildInfoMojo extends AbstractMojo {
 /**
 * Determines which system properties are added to the buildinfo file.
 * @parameter
 */

142

Developing Custom Maven Plugins

 private String systemProperties;
 /**
 * The location to write the buildinfo file. Used to attach the buildinfo
 * to the project jar for installation and deployment.
 * @parameter expression="${buildinfo.outputFile}" default- \

value="${project.build.directory}/${project.artifactId}- \
${project.version}-buildinfo.xml"

 * @required
 */
 private File outputFile;
 public void execute() throws MojoExecutionException {
 BuildInfo buildInfo = new BuildInfo();
 addSystemProperties(buildInfo);
 try {
 BuildInfoUtils.writeXml(buildInfo, outputFile);
 } catch (IOException e) {
 throw new MojoExecutionException("Error writing buildinfo \

XML file. Reason: " + e.getMessage(), e);
 }
 }
 private void addSystemProperties(BuildInfo buildInfo) {
 Properties sysprops = System.getProperties();
 if (systemProperties != null) {
 String[] keys = systemProperties.split(",");
 for (int i = 0; i < keys.length; i++) {
 String key = keys[i].trim();
 String value = sysprops.getProperty(key, \

BuildInfoConstants.MISSING_INFO_PLACEHOLDER);
 buildInfo.addSystemProperty(key, value);
 }
 }
 }
}

While the code for this mojo is fairly straightforward, it's worthwhile to take a closer look at the
javadoc annotations. In the class-level javadoc comment, there are two special annotations:

/**
 * @goal extract
 * @phase package
 */

The first annotation, @goal, tells the plugin tools to treat this class as a mojo named extract. When
you invoke this mojo, you will use this name. The second annotation tells Maven where in the build life
cycle this mojo should be executed. In this case, you're collecting information from the environment
with the intent of distributing it alongside the main project artifact in the repository. Therefore, it makes
sense to execute this mojo in the package phase, so it will be ready to attach to the project artifact. In
general, attaching to the package phase also gives you the best chance of capturing all of the
modifications made to the build state before the jar is produced.

143

Better Builds with Maven

Aside from the class-level comment, you have several field-level javadoc comments, which are used
to specify the mojo's parameters. Each offers a slightly different insight into parameter specification,
so they will be considered separately. First, consider the parameter for the systemProperties
variable:

/**
 * @parameter expression="${buildinfo.systemProperties}"
 */

This is one of the simplest possible parameter specifications. Using the @parameter annotation by
itself, with no attributes, will allow this mojo field to be configured using the plugin configuration
specified in the POM. However, you may want to allow a user to specify which system properties to
include in the build information file. This is where the expression attribute comes into play. Using the
expression attribute, you can specify the name of this parameter when it's referenced from the
command line. In this case, the expression attribute allows you to specify a list of system properties
on-the-fly, as follows:

localhost $ mvn buildinfo:extract \
-Dbuildinfo.systemProperties=java.version,user.dir

The module where the command is executed should be bound to a plugin with a
buildinfo goal prefix. In this case, the guinea-pig module is bound to the maven-
buildinfo-plugin having the buildinfo goal prefix so run the above command
from the guinea-pig directory.

Finally, the outputFile parameter presents a slightly more complex example of parameter
annotation. However, since you have more specific requirements for this parameter, the complexity is
justified. Take another look:

/**
* The location to write the buildinfo file. Used to attach the buildinfo
* for installation and deployment.
*
* @parameter expression="${buildinfo.outputFile}" default- \
value="${project.build.directory}/${project.artifactId}- \
${project.version}-buildinfo.xml"

*
* @required
*/

In this case, the mojo cannot function unless it knows where to write the build information file, as
execution without an output file would be pointless. To ensure that this parameter has a value, the
mojo uses the @required annotation. If this parameter has no value when the mojo is configured,
the build will fail with an error. In addition, you want the mojo to use a certain value – calculated from
the project's information – as a default value for this parameter. In this example, you can see why the
normal Java field initialization is not used. The default output path is constructed directly inside the
annotation, using several expressions to extract project information on-demand.

144

Developing Custom Maven Plugins

 The Plugin POM
Once the mojo has been written, you can construct an equally simple POM which will allow you to
build the plugin, as follows:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.devzuz.mvnbook.plugins</groupId>
 <artifactId>maven-buildinfo-plugin</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>maven-plugin</packaging>

 <dependencies>
 <dependency>
 <groupId>org.apache.maven</groupId>
 <artifactId>maven-plugin-api</artifactId>
 <version>2.0</version>
 </dependency>
 <dependency>
 <groupId>com.devzuz.mvnbook.shared</groupId>
 <artifactId>buildinfo</artifactId>
 <version>1.0-SNAPSHOT</version>
 </dependency>

[...]
 </dependencies>
</project>

This POM declares the project's identity and its two dependencies.

Note the dependency on the buildinfo project, which provides the parsing and formatting utilities
for the build information file. Also, note the packaging – specified as maven-plugin – which means that
this plugin build will follow the maven-plugin life-cycle mapping. This mapping is a slightly modified
version of the one used for the jar packaging, which simply adds plugin descriptor extraction and
generation to the build process.

145

Better Builds with Maven

 Binding to the life cycle
Now that you have a method of capturing build-time environmental information, you need to ensure
that every build captures this information. The easiest way to guarantee this is to bind the extract
mojo to the life cycle, so that every build triggers it. This involves modification of the standard jar life-
cycle, which you can do by adding the configuration of the new plugin to the Guinea Pig POM, as
follows:

<build>
 [...]
 <plugins>
 <plugin>
 <groupId>com.devzuz.mvnbook.plugins</groupId>
 <artifactId>maven-buildinfo-plugin</artifactId>
 <executions>
 <execution>
 <id>extract</id>
 <configuration>
 <systemProperties>os.name,java.version</systemProperties>
 </configuration>
 <goals>
 <goal>extract</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 [...]
 </plugins>
 [...]
</build>

The above binding will execute the extract mojo from your new maven-buildinfo-plugin
during the package phase of the life cycle, and capture the os.name system property.

146

Developing Custom Maven Plugins

 The output
Now that you have a mojo and a POM, you can build the plugin and try it out! First, build the buildinfo
plugin with the following commands:

cd C:\book-projects\maven-buildinfo-plugin

mvn clean install

Next, test the plugin by building Guinea Pig with the buildinfo plugin bound to its life cycle as
follows:

cd C:\book-projects\guinea-pig

mvn package

When the Guinea Pig build executes, you should see output similar to the following:

[...]
[INFO] [buildinfo:extract {execution: extract}]
[INFO]
[INFO]
[INFO] --
[INFO] Reactor Summary:
[INFO] --
[INFO] Guinea Pig Sample Application SUCCESS [6.468s]
[INFO] Guinea Pig API .. SUCCESS [2.359s]
[INFO] Guinea Pig Core SUCCESS [0.469s]
[INFO] --
[INFO] BUILD SUCCESSFUL
[INFO] --
[...]

Under the target directory, there should be a file named:

guinea-pig-1.0-SNAPSHOT-buildinfo.xml

In the file, you will find information similar to the following:
<?xml version="1.0" encoding="UTF-8"?><buildinfo>
 <systemProperties>
 <java.version>1.5.0_06</java.version>
 <os.name>Windows XP</os.name>
 </systemProperties>
 <sourceRoots>
 <sourceRoot>src\main\java</sourceRoot>
 </sourceRoots>
 <resourceRoots>
 <resourceRoot>src\main\resources</resourceRoot>

147

Better Builds with Maven

 </resourceRoots>
</buildinfo>

While the name of the OS and the java version may differ, the output of of the generated build
information is clear enough. Your mojo has captured the name of operating system being used to
execute the build and the version of the jvm, and both of these properties can have profound effects
on binary compatibility.

5.4.2. BuildInfo Example: Notifying Other Developers with an Ant Mojo
Now that some important information has been captured, you need to share it with others in your
team when the resulting project artifact is deployed. It's important to remember that in the Maven
world, “deployment” is defined as injecting the project artifact into the Maven repository system. For
now, it might be enough to send a notification e-mail to the project development mailing list, so that
other team members have access to it.

Of course, such a task could be handled using a Java-based mojo and the JavaMail API from Sun.
However, given the amount of setup and code required, and the dozens of well-tested, mature tasks
available for build script use (including one specifically for sending e-mails), it's simpler to use Ant.

After writing the Ant target to send the notification e-mail, you just need to write a mojo definition to
wire the new target into Maven's build process.

 The Ant target
To leverage the output of the mojo from the previous example – the build information file – you can
use that content as the body of the e-mail. From here, it's a simple matter of specifying where the e-
mail should be sent, and how. Your new mojo will be in a file called notify.build.xml, and should
look similar to the following:

<project>
 <target name="notify-target">
 <mail from="maven@localhost" replyto="${listAddr}"

 subject="Build Info for Deployment of ${project.name}"
 mailhost="${mailHost}" mailport="${mailPort}"
 messagefile="${buildinfo.outputFile}">

 <to>${listAddr}</to>

 </mail>
 </target>
</project>

If you're familiar with Ant, you'll notice that this mojo expects several project properties. Information
like the to: address will have to be dynamic; therefore, it should be extracted directly from the POM for
the project we're building. To ensure these project properties are in place within the Ant Project
instance, simply declare mojo parameters for them.

148

Developing Custom Maven Plugins

 The Mojo Metadata file
Unlike the prior Java examples, metadata for an Ant mojo is stored in a separate file, which is associated
to the build script using a naming convention. In this example, the build script was called
notify.build.xml. The corresponding metadata file will be called notify.mojos.xml and should
appear as follows:

<pluginMetadata>
 <mojos>
 <mojo>
 <call>notify-target</call>
 <goal>notify</goal>
 <phase>deploy</phase>
 <description><![CDATA[
 Email environment information from the current build to the
 development mailing list when the artifact is deployed.
]]></description>
 <parameters>
 <parameter>
 <name>buildinfo.outputFile</name>
 <defaultValue>
 ${project.build.directory}/${project.artifactId}- \

${project.version}-buildinfo.xml
 </defaultValue>
 <required>true</required>
 <readonly>false</readonly>
 </parameter>
 <parameter>
 <name>listAddr</name>
 <required>true</required>
 </parameter>
 <parameter>
 <name>project.name</name>
 <defaultValue>${project.name}</defaultValue>
 <required>true</required>
 <readonly>true</readonly>
 </parameter>
 <parameter>
 <name>mailHost</name>
 <expression>${mailHost}</expression>
 <defaultValue>localhost</defaultValue>
 <required>false</required>
 </parameter>
 <parameter>
 <name>mailPort</name>
 <expression>${mailPort}</expression>
 <defaultValue>25</defaultValue>
 <required>false</required>
 </parameter>
 </parameters>
 </mojo>
 </mojos>
</pluginMetadata>

149

Better Builds with Maven

At first glance, the contents of this file may appear different than the metadata used in the Java mojo;
however, upon closer examination, you will see many similarities.

First of all, since you now have a good concept of the types of metadata used to describe a mojo, the
overall structure of this file should be familiar. As with the Java example, mojo-level metadata
describes details such as phase binding and mojo name.

Also, metadata specify a list of parameters for the mojo, each with its own information like name,
expression, default value, and more. The expression syntax used to extract information from the build
state is exactly the same, and parameter flags such as required are still present, but expressed in
XML.

When this mojo is executed, Maven still must resolve and inject each of these parameters into the
mojo; the difference here is the mechanism used for this injection. In Java, parameter injection takes
place either through direct field assignment, or through JavaBeans-style setXXX() methods. In an
Ant-based mojo however, parameters are injected as properties and references into the Ant Project
instance.

The rule for parameter injection in Ant is as follows: if the parameter's type is
java.lang.String (the default), then its value is injected as a property; otherwise, its value
is injected as a project reference. In this example, all of the mojo's parameter types are
java.lang.String. If one of the parameters were some other object type, you'd have to
add a <type> element alongside the <name> element, in order to capture the parameter's type
in the specification.

Finally, notice that this mojo is bound to the deploy phase of the life cycle. This is an important point in
the case of this mojo, because you're going to be sending e-mails to the development mailing list. Any
build that runs must be deployed for it to affect other development team members, so it's pointless to
spam the mailing list with notification e-mails every time a jar is created for the project. Instead, by
binding the mojo to the deploy phase of life cycle, the notification e-mails will be sent only when a new
artifact becomes available in the remote repository.

As with the Java example, a more in-depth discussion of the metadata file for Ant mojos is available in
Appendix A.

 Modifying the Plugin POM for Ant Mojos
Since Maven 2.0 shipped without support for Ant-based mojos (support for Ant was added later in
version 2.0.2), some special configuration is required to allow the maven-plugin-plugin to recognize
Ant mojos. Fortunately, Maven allows POM-specific injection of plugin-level dependencies in order to
accommodate plugins that take a framework approach to providing their functionality.

The maven-plugin-plugin is a perfect example, with its use of the MojoDescriptorExtractor
interface from the maven-plugin-tools-api library. This library defines a set of interfaces for
parsing mojo descriptors from their native format and generating various output from those
descriptors – including plugin descriptor files. The maven-plugin-plugin ships with the Java and
Beanshell provider libraries which implement the above interface.

This allows developers to generate descriptors for Java- or Beanshell-based mojos with no additional
configuration. However, to develop an Ant-based mojo, you will have to add support for Ant mojo
extraction to the maven-plugin-plugin.

150

Developing Custom Maven Plugins

To accomplish this, you will need to add a dependency on the maven-plugin-tools-ant library to
the maven-plugin-plugin using POM configuration as follows:

<project>
 [...]
 <build>
 <plugins>
 <plugin>
 <groupId>com.devzuz.mvnbook.plugins</groupId>

 <artifactId>maven-plugin-plugin</artifactId>
 <dependencies>
 <dependency>
 <groupId>org.apache.maven</groupId>
 <artifactId>maven-plugin-tools-ant</artifactId>
 <version>2.0.2</version>
 </dependency>
 </dependencies>
 </plugin>
 </plugins>
 </build>
 [...]
</project>

Additionally, since the plugin now contains an Ant-based mojo, it requires a couple of new
dependencies, the specifications of which should appear as follows:

<dependencies>
 [...]
 <dependency>
 <groupId>org.apache.maven</groupId>
 <artifactId>maven-script-ant</artifactId>
 <version>2.0.2</version>
 </dependency>
 <dependency>
 <groupId>ant</groupId>
 <artifactId>ant</artifactId>
 <version>1.6.5</version>
 </dependency>
 [...]
</dependencies>

The first of these new dependencies is the mojo API wrapper for Ant build scripts, and it is always
necessary for embedding Ant scripts as mojos in the Maven build process. The second new
dependency is, quite simply, a dependency on the core Ant library (whose necessity should be
obvious). If you don't have Ant in the plugin classpath, it will be quite difficult to execute an Ant-based
plugin.

151

Better Builds with Maven

 Binding the Notify Mojo to the life cycle
Once the plugin descriptor is generated for the Ant mojo, it behaves like any other type of mojo to
Maven. Even its configuration is the same. Adding a life-cycle binding for the new Ant mojo in the
Guinea Pig POM should appear as follows:

<build>
 [...]
 <plugins>
 <plugin>
 <groupId>com.devzuz.mvnbook.plugins</groupId>

<artifactId>maven-buildinfo-plugin</artifactId>
 <executions>
 <execution>
 <id>extract</id>
 [...]
 </execution>
 <execution>
 <id>notify</id>
 <goals>
 <goal>notify</goal>
 </goals>
 <configuration>
 <listAddr>dev@guineapig.codehaus.org</listAddr>
 </configuration>
 </execution>
 </executions>
 </plugin>
 [...]
 </plugins>
</build>

The existing <execution> section – the one that binds the extract mojo to the build – is not
modified. Instead, a new section for the notify mojo is created. This is because an execution
section can address only one phase of the build life cycle, and these two mojos should not
execute in the same phase (as mentioned previously).

In order to tell the notify mojo where to send this e-mail, you should add a configuration section to the
new execution section, which supplies the listAddr parameter value.

Now, execute the following command:

mvn deploy

The build process executes the steps required to build and deploy a jar - except in this case, it will
also extract the relevant environmental details during the package phase, and send them to the
Guinea Pig development mailing list in the deploy phase. Again, notification happens in the deploy
phase only, because non-deployed builds will have no effect on other team members.

Note: You have to configure distributionManagement and scm to successfully
execute mvn deploy. See section on Deploying your Application of chapter 3.

152

Developing Custom Maven Plugins

5.5. Advanced Mojo Development
The preceding examples showed how to declare basic mojo parameters, and how to annotate the
mojo with a name and a preferred phase binding. The next examples cover more advanced topics
relating to mojo development. The following sections do not build on one another, and are not
required for developing basic mojos. However, if you want to know how to develop plugins that
manage dependencies, project source code and resources, and artifact attachments, then read on!

5.5.1. Gaining Access to Maven APIs
Before proceeding, it's important to mention that the techniques discussed in this section make use of
Maven's project and artifact APIs. Whenever you need direct access to the current project instance,
one or more artifacts in the current build, or any related components, you must add a dependency on
one or more Maven APIs to your project's POM.

To enable access to Maven's project API, including the ability to work with the current project
instance, modify your POM to define a dependency on maven-project by adding the following:

<dependency>
 <groupId>org.apache.maven</groupId>
 <artifactId>maven-project</artifactId>
 <version>2.0.2</version>
</dependency>

To enable access to information in artifacts via Maven's artifact API, modify your POM to define a
dependency on maven-artifact by adding the following:

<dependency>
 <groupId>org.apache.maven</groupId>
 <artifactId>maven-artifact</artifactId>
 <version>2.0</version>
</dependency>

It's important to realize that Maven's artifact APIs are slightly different from its project API, in that the
artifact-related interfaces are actually maintained in a separate artifact from the components used to
work with them. Therefore, if you only need to access information inside an artifact, the above
dependency declaration is fine. However, if you also need to work with artifacts – including actions
like artifact resolution – you must also declare a dependency on maven-artifact-manager in
your POM, like this:

153

Better Builds with Maven

<dependency>
 <groupId>org.apache.maven</groupId>
 <artifactId>maven-artifact-manager</artifactId>
 <version>2.0</version>
</dependency>

5.5.2. Accessing Project Dependencies
Many mojos perform tasks that require access to a project's dependencies. For example, the compile
mojo in the maven-compiler-plugin must have a set of dependency paths in order to build the
compilation classpath. In addition, the test mojo in the maven-surefire-plugin requires the project's
dependency paths so it can execute the project's unit tests with a proper classpath. Fortunately,
Maven makes it easy to inject a project's dependencies.

To enable a mojo to work with the set of artifacts that comprise the project's dependencies, only the
following two changes are required:

• First, the mojo must tell Maven that it requires the project dependency set.
• Second, the mojo must tell Maven that it requires the project's dependencies be resolved

(this second requirement is critical, since the dependency resolution process is what
populates the set of artifacts that make up the project's dependencies).

 Injecting the project dependency set
As described above, if the mojo works with a project's dependencies, it must tell Maven that it
requires access to that set of artifacts. As with all declarations, this is specified via a mojo parameter
definition and should use the following syntax:

/**
 * The set of dependencies required by the project
 * @parameter default-value="${project.dependencies}"
 * @required
 * @readonly
 */
private java.util.Set dependencies;

This declaration should be familiar to you, since it defines a parameter with a default value that is
required to be present before the mojo can execute. However, this declaration has another
annotation, which might not be as familiar: @readonly. This annotation tells Maven not to allow the
user to configure this parameter directly, namely it disables configuration via the POM under the
following section:

<configuration>
 <dependencies>...</dependencies>
</configuration>

It also disables configuration via system properties, such as:

-Ddependencies=[...]

154

Developing Custom Maven Plugins

So, you may be wondering, “How exactly can I configure this parameter?" The answer is that the
mojos parameter value is derived from the dependencies section of the POM, so you configure this
parameter by modifying that section directly.

If this parameter could be specified separately from the main dependencies section, users could
easily break their builds – particularly if the mojo in question compiled project source code.

In this case, direct configuration could result in a dependency being present for compilation, but being
unavailable for testing. Therefore, the @readonly annotation functions to force users to configure
the POM, rather than configuring a specific plugin only.

 Requiring dependency resolution
Having declared a parameter that injects the projects dependencies into the mojo, the mojo is missing
one last important step. To gain access to the project's dependencies, your mojo must declare that it
needs them.

Maven provides a mechanism that allows a mojo to specify whether it requires the project
dependencies to be resolved, and if so, at which scope. Maven 2 will not resolve project
dependencies until a mojo requires it. Even then, Maven will resolve only the dependencies that
satisfy the requested scope. In other words, if a mojo declares that it requires dependencies for the
compile scope, any dependencies specific to the test scope will remain unresolved. However, if later
in the build process, Maven encounters another mojo that declares a requirement for test-scoped
dependencies, it will force all of the dependencies to be resolved (test is the widest possible scope,
encapsulating all others).

It's important to note that your mojo can require any valid dependency scope to be resolved prior to its
execution.

If you've used Maven 1, you'll know that one of its major problems is that it always resolves all
project dependencies before invoking the first goal in the build (for clarity, Maven 2.0 uses the
term 'mojo' as roughly equivalent to the Maven 1.x term 'goal'). Consider the case where a
developer wants to clean the project directory using Maven 1.x. If the project's dependencies
aren't available, the clean process will fail – though not because the clean goal requires the
project dependencies. Rather, this is a direct result of the rigid dependency resolution design
in Maven 1.x.
Maven 2 addresses this problem by deferring dependency resolution until the project's
dependencies are actually required. If a mojo doesn't need access to the dependency list, the build
process doesn't incur the added overhead of resolving them.

Returning to the example, if your mojo needs to work with the project's dependencies, it will have to
tell Maven to resolve them. Failure to do so will cause an empty set to be injected into the mojo's
dependencies parameter.

155

Better Builds with Maven

You can declare the requirement for the test-scoped project dependency set using the following
class-level annotation:

/**
 * @requiresDependencyResolution test
 [...]
 */

Now, the mojo should be ready to work with the dependency set.

 BuildInfo example: logging dependency versions
Turning once again to the maven-buildinfo-plugin, you will want to log the versions of the
dependencies used during the build. This is critical when the project depends on snapshot versions of
other libraries. In this case, knowing the specific set of snapshots used to compile a project can lend
insights into why other builds are breaking. For example, one of the dependency libraries may have a
newer snapshot version available.

To that end, you'll add the dependency-set injection code discussed previously to the extract mojo in
the maven-buildinfo-plugin, so it can log the exact set of dependencies that were used to
produce the project artifact.

This will result in the addition of a new section in the buildinfo file, which enumerates all the
dependencies used in the build, along with their versions – including those dependencies that are
resolved transitively. Once you have access to the project dependency set, you will need to iterate
through the set, adding the information for each individual dependency to your buildinfo object.

The code required is as follows:

 public void execute() throws MojoExecutionException {
 [...]
 addResolvedDependencies(buildInfo);
 [...]
 }
 private void addResolvedDependencies(BuildInfo buildInfo) {
 if (dependencies != null && !dependencies.isEmpty()) {
 for (Iterator it = dependencies.iterator(); it.hasNext();) {
 Artifact artifact = (Artifact) it.next();
 ResolvedDependency rd = new ResolvedDependency();
 rd.setGroupId(artifact.getGroupId());
 rd.setArtifactId(artifact.getArtifactId());
 rd.setResolvedVersion(artifact.getVersion());
 rd.setOptional(artifact.isOptional());
 rd.setScope(artifact.getScope());
 rd.setType(artifact.getType());
 if (artifact.getClassifier() != null) {
 rd.setClassifier(artifact.getClassifier());
 }
 buildInfo.addResolvedDependency(rd);
 }
 }
 }

156

Developing Custom Maven Plugins

When you re-build the plugin and re-run the Guinea Pig build, the extract mojo should produce the
same buildinfo file, with an additional section called resolvedDependencies that looks similar
to the following:

<resolvedDependencies>
 <resolvedDependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <resolvedVersion>3.8.1</resolvedVersion>
 <optional>false</optional>
 <type>jar</type>
 <scope>test</scope>
 </resolvedDependency>
 [...]
 <resolvedDependency>
 <groupId>com.devzuz.mvnbook.guineapig</groupId>
 <artifactId>guinea-pig-api</artifactId>
 <resolvedVersion>1.0-SNAPSHOT</resolvedVersion>
 <optional>false</optional>
 <type>jar</type>
 <scope>compile</scope>
 </resolvedDependency>
 [...]
</resolvedDependencies>

The first dependency listed here, junit, has a static version of 3.8.1. This won't add much insight for
debuggers looking for changes from build to build, but consider the next dependency: guinea-pig-
api. This dependency is part of the example development effort, and is still listed with the version
1.0-alpha-SNAPSHOT in the POM. The actual snapshot version used for this artifact in a previous
build could yield tremendous insight into the reasons for a current build failure, particularly if the
newest snapshot version is different.

If you were using a snapshot version from the local repository which has not been deployed,
the resolvedVersion in the output above would be 1.0-alpha-SNAPSHOT. This is
because snapshot time-stamping happens on deployment only.

5.5.3. Accessing Project Sources and Resources
In certain cases, it's possible that a plugin may be introduced into the build process when a profile is
activated. If this plugin adds resources like images, or new source code directories to the build, it can
have dramatic effects on the resulting project artifact. For instance, when a project is built in a JDK
1.4 environment, it may be necessary to augment a project's code base with an additional source
directory. Once this new source directory is in place, the compile mojo will require access to it, and
other mojos may need to produce reports based on those same source directories. Therefore, it's
important for mojos to be able to access and manipulate both the source directory list and the
resource definition list for a project.

157

Better Builds with Maven

 Adding a source directory to the build
Although the POM supports only a single sourceDirectory entry, Maven's concept of a project
can accommodate a whole list of directories. This can be very useful when plugins generate source
code, or simply need to augment the basic project code base. Maven's project API bridges this gap,
allowing plugins to add new source directories as they execute. It requires access to the current
MavenProject instance only, which can be injected into a mojo using the following code:

/**
 * Project instance, needed for attaching the buildinfo file.
 * Used to add new source directory to the build.
 * @parameter default-value="${project}"
 * @required
 * @readonly
 */
private MavenProject project;

This declaration identifies the project field as a required mojo parameter that will inject the current
MavenProject instance into the mojo for use. As in the prior project dependencies discussion, this
parameter also adds the @readonly annotation. This annotation tells Maven that users cannot
modify this parameter, instead, it refers to a part of the build state that should always be present (a
more in-depth discussion of this annotation is available in section 3.6, Chapter 3 of this book). The
current project instance is a great example of this; any normal build will have a current project, and no
other project contains current state information for this build.

It is possible that some builds won't have a current project, as in the case where the maven-
archetype-plugin is used to create a stub of a new project. However, mojos require a current
project instance to be available, unless declared otherwise. Maven will fail the build if it doesn't
have a current project instance and it encounters a mojo that requires one. So, if you expect
your mojo to be used in a context where there is no POM – as in the case of the archetype
plugin – then simply add the class-level annotation: @requiresProject with a value of
false, which tells Maven that it's OK to execute this mojo in the absence of a POM.

Once the current project instance is available to the mojo, it's a simple matter of adding a new source
root to it, as in the following example:

project.addCompileSourceRoot(sourceDirectoryPath);

Mojos that augment the source-root list need to ensure that they execute ahead of the compile phase.
The generally-accepted binding for this type of activity is in the generate-sources life-cycle phase.
Further, when generating source code, the accepted default location for the generated source is in:

${project.build.directory}/generated-sources/<plugin-prefix>
While conforming with location standards like this is not required, it does improve the chances that
your mojo will be compatible with other plugins bound to the same life cycle.

158

Developing Custom Maven Plugins

 Adding a resource to the build
Another common practice is for a mojo to generate some sort of non-code resource, which will be
packaged up in the same jar as the project classes. This could be a descriptor for binding the project
artifact into an application framework, as in the case of Maven itself and the components.xml file
found in all maven artifacts. Many different mojo's package resources with their generated artifacts
such as web.xml files for servlet engines, or wsdl files for web services.

Whatever the purpose of the mojo, the process of adding a new resource directory to the current build
is straightforward and requires access to the MavenProject and MavenProjectHelper:

/**
 * Project instance, needed for attaching the buildinfo file.
 * Used to add new source directory to the build.
 * @parameter default-value="${project}"
 * @required
 * @readonly
 */
private MavenProject project;

This declaration will inject the current project instance into the mojo, as discussed previously.
However, to simplify adding resources to a project, the mojo also needs access to the
MavenProjectHelper component. This component is part of the Maven application, which means
it's always present; so your mojo simply needs to ask for it. The project helper component can be
injected as follows:

/**
 * Helper class to assist in attaching artifacts to the project instance.
 * project-helper instance, used to make addition of resources simpler.
 * @component
 * @required
 * @readonly
 */
private MavenProjectHelper projectHelper;

Right away, you should notice something very different about this parameter. Namely, that it's not a
parameter at all! In fact, this is what Maven calls a component requirement (it's a dependency on an
internal component of the running Maven application). To be clear, the project helper is not a build
state; it is a utility.

Component requirements are simple to declare; in most cases, the unadorned @component
annotation – like the above code snippet – is adequate. Component requirements are not available for
configuration by users.

Normally, the Maven application itself is well-hidden from the mojo developer. However, in
some special cases, Maven components can make it much simpler to interact with the build
process. For example, the MavenProjectHelper is provided to standardize the process of
augmenting the project instance, and abstract the associated complexities away from the mojo
developer. It provides methods for attaching artifacts and adding new resource definitions to
the current project.

159

Better Builds with Maven

A complete discussion of Maven's architecture – and the components available – is beyond the
scope of this chapter; however, the MavenProjectHelper component is worth mentioning here,
as it is particularly useful to mojo developers.

With these two objects at your disposal, adding a new resource couldn't be easier. Simply define the
resources directory to add, along with inclusion and exclusion patterns for resources within that
directory, and then call a utility method on the project helper. The code should look similar to the
following:

String directory = "relative/path/to/some/directory";
List includes = Collections.singletonList("**/*");
List excludes = null;
projectHelper.addResource(project, directory, includes, excludes);

The prior example instantiates the resource's directory, inclusion patterns, and exclusion
patterns as local variables, for the sake of brevity. In a typical case, these values would come
from other mojo parameters, which may or may not be directly configurable.

Again, it's important to understand where resources should be added during the build life cycle.
Resources are copied to the classes directory of the build during the process-resources phase. If your
mojo is meant to add resources to the eventual project artifact, it will need to execute ahead of this
phase. The most common place for such activities is in the generate-resources life-cycle phase.
Again, conforming with these standards improves the compatibility of your plugin with other plugins in
the build.

 Accessing the source-root list
Just as some mojos add new source directories to the build, others must read the list of active source
directories, in order to perform some operation on the source code. The classic example is the
compile mojo in the maven-compiler-plugin, which actually compiles the source code contained in
these root directories into classes in the project output directory. Other examples include javadoc
mojo in the maven-javadoc-plugin, and the jar mojo in the maven-source-plugin. Gaining access to
the list of source root directories for a project is easy; all you have to do is declare a single parameter
to inject them, as in the following example:

/**
 * The list of directories which contain source code for the project.
 * List of source roots containing non-test code.
 * @parameter default-value="${project.compileSourceRoots}"
 * @required
 * @readonly
 */
private List sourceRoots;

Similar to the parameter declarations from previous sections, this parameter declaration states that
Maven does not allow users to configure this parameter directly; instead, they have to modify the
sourceDirectory element in the POM, or else bind a mojo to the life-cycle phase that will add an
additional source directory to the build. The parameter is also required for this mojo to execute; if it's
missing, the entire build will fail.

160

Developing Custom Maven Plugins

Now that the mojo has access to the list of project source roots, it can iterate through them, applying
whatever processing is necessary. Returning to the buildinfo example, it could be critically
important to track the list of source directories used in a particular build, for eventual debugging
purposes. If a certain profile injects a supplemental source directory into the build (most likely by way
of a special mojo binding), then this profile would dramatically alter the resulting project artifact when
activated. Therefore, in order to incorporate list of source directories to the buildinfo object, you
need to add the following code:

 public void execute() throws MojoExecutionException {
 [...]
 addSourceRoots(buildInfo);

 [...]
 }
 private void addSourceRoots(BuildInfo buildInfo) {
 if (sourceRoots != null && !sourceRoots.isEmpty()) {
 for (Iterator it = sourceRoots.iterator(); it.hasNext();) {
 String sourceRoot = (String) it.next();
 buildInfo.addSourceRoot(makeRelative(sourceRoot));
 }
 }
 }

One thing to note about this code snippet is the makeRelative() method. By the time the mojo
gains access to them, source roots are expressed as absolute file-system paths. In order to make this
information more generally applicable, any reference to the path of the project directory in the local file
system should be removed. This involves subtracting ${basedir} from the source-root paths. To be
clear, the ${basedir} expression refers to the location of the project directory in the local file
system.

When you add this code to the extract mojo in the maven-buildinfo-plugin, it will add a
corresponding section to the buildinfo file that looks like the following:

<sourceRoots>
 <sourceRoot>src/main/java</sourceRoot>
 <sourceRoot>some/custom/srcDir</sourceRoot>
</sourceRoots>

Since a mojo using this code to access project source-roots does not actually modify the build state in
any way, it can be bound to any phase in the life cycle. However, as in the case of the extract mojo,
it's better to bind it to a later phase like package if capturing a complete picture of the project is
important. Remember, binding this mojo to an early phase of the life cycle increases the risk of
another mojo adding a new source root in a later phase. In this case however, binding to any phase
later than compile should be acceptable, since compile is the phase where source files are converted
into classes.

161

Better Builds with Maven

 Accessing the resource list
Non-code resources complete the picture of the raw materials processed by a Maven build. You've
already learned that mojos can modify the list of resources included in the project artifact; now, let's
learn about how a mojo can access the list of resources used in a build. This is the mechanism used
by the resources mojo in the maven-resources-plugin, which copies all non-code resources to the
output directory for inclusion in the project artifact.

Much like the source-root list, the resources list is easy to inject as a mojo parameter. The parameter
appears as follows:

/**
 * The list of resource definitions to be included in the project jar.
 * List of Resource objects for the current build, containing
 * directory, includes, and excludes.
 * @parameter default-value="${project.resources}"
 * @required
 * @readonly
 */
private List resources;

Just like the source-root injection parameter, this parameter is declared as required for mojo
execution and cannot be edited by the user. In this case, the user has the option of modifying the
value of the list by configuring the resources section of the POM.

As noted before with the dependencies parameter, allowing direct configuration of this parameter
could easily produce results that are inconsistent with other resource-consuming mojos. It's also
important to note that this list consists of Resource objects, which in fact contain information about a
resource root, along with some matching rules for the resource files it contains.

Since the resources list is an instance of java.util.List, and Maven mojos must be able to
execute in a JDK 1.4 environment that doesn't support Java generics, mojos must be smart enough to
cast list elements as org.apache.maven.model.Resource instances.

Since mojos can add new resources to the build programmatically, capturing the list of resources
used to produce a project artifact can yield information that is vital for debugging purposes. For
instance, if an activated profile introduces a mojo that generates some sort of supplemental
framework descriptor, it can mean the difference between an artifact that can be deployed into a
server environment and an artifact that cannot. Therefore, it is important that the buildinfo file
capture the resource root directories used in the build for future reference. It's a simple task to add
this capability, and can be accomplished through the following code snippet:

162

Developing Custom Maven Plugins

public void execute() throws MojoExecutionException {
 [...]
 addResourceRoots(buildInfo);
 [...]
}
private void addResourceRoots(BuildInfo buildInfo) {
 if (resources != null && !resources.isEmpty()) {
 for (Iterator it = resources.iterator(); it.hasNext();) {
 Resource resource = (Resource) it.next();
 String resourceRoot = resource.getDirectory();
 buildInfo.addResourceRoot(makeRelative(resourceRoot));
 }
 }
}

As with the prior source-root example, you'll notice the makeRelative() method. This method
converts the absolute path of the resource directory into a relative path, by trimming the ${basedir}
prefix. All POM paths injected into mojos are converted to their absolute form first, to avoid any
ambiguity. It's necessary to revert resource directories to relative locations for the purposes of the
buildinfo plugin, since the ${basedir} path won't have meaning outside the context of the local
file system.

Adding this code snippet to the extract mojo in the maven-buildinfo-plugin will result in a
resourceRoots section being added to the buildinfo file. That section should appear as follows:

<resourceRoots>
 <resourceRoot>src/main/resources</resourceRoot>
 <resourceRoot>target/generated-resources/xdoclet</resourceRoot>
</resourceRoots>

Once more, it's worthwhile to discuss the proper place for this type of activity within the build life cycle.
Since all project resources are collected and copied to the project output directory in the process-
resources phase, any mojo seeking to catalog the resources used in the build should execute at least
as late as the process-resources phase. This ensures that any resource modifications introduced by
mojos in the build process have been completed. Like the vast majority of activities, which may be
executed during the build process, collecting the list of project resources has an appropriate place in
the life cycle.

 Note on testing source-roots and resources
All of the examples in this advanced development discussion have focused on the handling of source
code and resources, which must be processed and included in the final project artifact. It's important
to note however, that for every activity examined that relates to source-root directories or resource
definitions, a corresponding activity can be written to work with their test-time counterparts.

This chapter does not discuss test-time and compile-time source roots and resources as separate
topics; instead, due to the similarities, the key differences are summarized in the table below. The
concepts are the same; only the parameter expressions and method names are different.

163

Better Builds with Maven

Table 5-2: Key differences between compile-time and test-time mojo activities

Activity Change This To This

Add testing source root project.addCompileSourceRoot() project.addTestSourceRoot()
Get testing source roots ${project.compileSourceRoots} ${project.testSourceRoots}
Add testing resource projectHelper.addResource() projectHelper.addTestResource

()
Get testing resources ${project.resources} ${project.testResources}

5.5.4. Attaching Artifacts for Installation and Deployment
Occasionally, mojos produce new artifacts that should be distributed alongside the main project
artifact in the Maven repository system. These artifacts are typically a derivative action or side effect
of the main build process. Maven treats these derivative artifacts as attachments to the main project
artifact, in that they are never distributed without the project artifact being distributed. Classic
examples of attached artifacts are source archives, javadoc bundles, and even the buildinfo file
produced in the examples throughout this chapter.

Once an artifact attachment is deposited in the Maven repository, it can be referenced like any other
artifact. Usually, an artifact attachment will have a classifier, like sources or javadoc, which
sets it apart from the main project artifact in the repository. Therefore, this classifier must also be
specified when declaring the dependency for such an artifact, by using the classifier element for
that dependency section within the POM.

When a mojo, or set of mojos, produces a derivative artifact, an extra piece of code must be executed
in order to attach that artifact to the project artifact. Doing so guarantees that attachment will be
distributed when the install or deploy phases are run. This extra step, which is still missing from the
maven-buildinfo-plugin example, can provide valuable information to the development team,
since it provides information about how each snapshot of the project came into existence.

While an e-mail describing the build environment is transient, and only serves to describe the latest
build, the distribution of the buildinfo file via Maven's repository will provide a more permanent
record of the build for each snapshot in the repository, for historical reference.

Including an artifact attachment involves adding two parameters and one line of code to your mojo.
First, you'll need a parameter that references the current project instance as follows:

/**
 * Project instance, needed for attaching the buildinfo file.
 * Used to add new source directory to the build.
 * @parameter default-value="${project}"
 * @required
 * @readonly
 */
private MavenProject project;

164

Developing Custom Maven Plugins

The MavenProject instance is the object with which your plugin will register the attachment with for
use in later phases of the lifecycle. For convenience you should also inject the following reference to
MavenProjectHelper, which will make the process of attaching the buildinfo artifact a little
easier:

/**
 * Helper class to assist in attaching artifacts to the project instance.
 * project-helper instance, used to make addition of resources simpler.
 * @component
 */
private MavenProjectHelper projectHelper;

See Section 5.5.2 for a discussion about MavenProjectHelper and component
requirements.

Once you include these two fields in the extract mojo within the maven-buildinfo-plugin, the
process of attaching the generated buildinfo file to the main project artifact can be accomplished
by adding the following code snippet:

projectHelper.attachArtifact(project, "xml", "buildinfo", outputFile);

From the prior examples, the meaning and requirement of project and outputFile references
should be clear. However, there are also two somewhat cryptic string values being passed in: “xml”
and “buildinfo”. These values represent the artifact extension and classifier, respectively.

By specifying an extension of “xml”, you're telling Maven that the file in the repository should be
named using a.xml extension. By specifying the “buildinfo” classifier, you're telling Maven that
this artifact should be distinguished from other project artifacts by using this value in the classifier
element of the dependency declaration. It identifies the file as being produced by the the maven-
buildinfo-plugin, as opposed to another plugin in the build process which might produce another
XML file with different meaning. This serves to attach meaning beyond simply saying, “This is an XML
file”.

Now that you've added code to distribute the buildinfo file, you can test it by re-building the plugin,
then running Maven to the install life-cycle phase on our test project. If you build the Guinea Pig
project using this modified version of the maven-buildinfo-plugin, you should see the
buildinfo file appear in the local repository alongside the project jar, as follows:

mvn install

cd C:\Documents and Settings\[user_home]\.m2\repository

cd com\devzuz\mvnbook\guineapig\guinea-pig-core\1.0-SNAPSHOT

dir

165

Better Builds with Maven

guinea-pig-core-1.0-SNAPSHOT-buildinfo.xml
guinea-pig-core-1.0-SNAPSHOT.jar
guinea-pig-core-1.0-SNAPSHOT.pom

Now, the maven-buildinfo-plugin is ready for action. It can extract relevant details from a
running build and generate a buildinfo file based on these details. From there, it can attach the
buildinfo file to the main project artifact so that it's distributed whenever Maven installs or deploys
the project.

Finally, when the project is deployed, the maven-buildinfo-plugin can also generate an e-mail
that contains the buildinfo file contents, and route that message to other development team
members on the project development mailing list.

166

Developing Custom Maven Plugins

5.6. Summary
In its unadorned state, Maven represents an implementation of the 80/20 rule. Using the default life-
cycle mapping, Maven can build a basic project with little or no modification – thus covering the 80%
case. However, in certain circumstances, a project requires special tasks in order to build
successfully. Whether they be code-generation, reporting, or verification steps, Maven can integrate
these custom tasks into the build process through its extensible plugin framework. Since the build
process for a project is defined by the plugins – or more accurately, the mojos – that are bound to the
build life cycle, there is a standardized way to inject new behavior into the build by binding new mojos
at different life-cycle phases.

In this chapter, you've learned that it's relatively simple to create a mojo that can extract relevant parts
of the build state in order to perform a custom build-process task – even to the point of altering the set
of source-code directories used to build the project. Working with project dependencies and
resources is equally as simple. Finally, you've also learned how a plugin generated file can be
distributed alongside the project artifact in Maven's repository system, enabling you to attach custom
artifacts for installation or deployment.

Many plugins already exist for Maven use, only a tiny fraction of which are a part of the default life-
cycle mapping. If your project requires special handling, chances are good that you can find a plugin
to address this need at the Apache Maven project, the Codehaus Mojo project, or the project web site
of the tools with which your project's build must integrate. If not, developing a custom Maven plugin is
an easy next step.

Mojo development can be as simple or as complex (to the point of embedding nested Maven
processes within the build) as you need it to be. Using the plugin mechanisms described in this
chapter, you can integrate almost any tool into the build process.

However, remember that whatever problem your custom-developed plugin solves, it's unlikely to be a
requirement unique to your project. So, if you have the means, please consider contributing back to
the Maven community by providing access to your new plugin. It is in great part due to the re-usable
nature of its plugins that Maven can offer such a powerful build platform.

167

http://mojo.codehaus.org/
http://maven.apache.org/

Better Builds with Maven

This page left intentionally blank.

168

6. Assessing Project Health with Maven

Assessing Project Health with
Maven
This chapter covers:

• How Maven relates to project health
• Organizing documentation and developer reports
• Selecting the right tools to monitor the health of your project
• How to incorporate reporting tools
• Tips for how to use tools more effectively

Life is not an exact science, it is an art.

- Samuel Butler

169

Better Builds with Maven

6.1. What Does Maven Have to do With Project Health?
In the introduction, it was pointed out that Maven's application of patterns provides visibility and
comprehensibility. It is these characteristics that assist you in assessing the health of your project.

Through the POM, Maven has access to the information that makes up a project, and using a variety
of tools, Maven can analyze, relate, and display that information in a single place. Because the POM
is a declarative model of the project, new tools that can assess its health are easily integrated. In this
chapter, you'll learn how to use a number of these tools effectively.

When referring to health, there are two aspects to consider:

• Code quality - determining how well the code works, how well it is tested, and how well it
adapts to change.

• Project vitality - finding out whether there is any activity on the project, and what the nature
of that activity is.

Maven takes all of the information you need to know about your project and brings it together under
the project Web site. The next three sections demonstrate how to set up an effective project Web site.

It is important not to get carried away with setting up a fancy Web site full of reports that nobody will
ever use (especially when reports contain failures they don't want to know about!). For this reason,
many of the reports illustrated can be run as part of the regular build in the form of a “check” that will
fail the build if a certain condition is not met.

But, why have a site, if the build fails its checks? The Web site also provides a permanent record of a
project's health, which everyone can see at any time. It provides additional information to help
determine the reasons for a failed build, and whether the conditions for the checks are set correctly.
This is important, because if the bar is set too high, there will be too many failed builds. This is
unproductive as minor changes are prioritized over more important tasks, to get a build to pass.
Conversely, if the bar is set too low, the project will meet only the lowest standard and go no further.

In this chapter, you will be revisiting the Proficio application that was developed in Chapter 3, and
learning more about the health of the project. The code that concluded Chapter 3 is also included in
Code_Ch06-1.zip for convenience as a starting point. To begin, unzip the Code_Ch06-1.zip file
into C:\mvnbook or your selected working directory, and then run mvn install from the
proficio subdirectory to ensure everything is in place.

170

Assessing Project Health with Maven

6.2. Adding Reports to the Project Web site
This section builds on the information on project Web sites in Chapter 2 and Chapter 3, and now
shows how to integrate project health information.

To start, review the project Web site shown in figure 6-1.

Figure 6-1: The reports generated by Maven

You can see that the navigation on the left contains a number of reports. The Project Info menu lists
the standard reports Maven includes with your site by default, unless you choose to disable them.
These reports are useful for sharing information with others, and to reference as links in your mailing
lists, SCM, issue tracker, and so on. For newcomers to the project, having these standard reports
means that those familiar with Maven Web sites will always know where to find the information they
need.

The second menu (shown opened in figure 6-1), Project Reports, is the focus of the rest of this
chapter. These reports provide a variety of insights into the quality and vitality of the project.

On a new project, this menu doesn't appear as there are no reports included. However, adding a new
report is easy. For example, you can add the Surefire report to the sample application, by including
the following section in proficio/pom.xml:

171

Better Builds with Maven

[...]
 <reporting>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-report-plugin</artifactId>
 </plugin>
 </plugins>
 </reporting>
 [...]
</project>

This adds the report to the top level project, and as a result, it will be inherited by all of the child
modules. You can now run the following site task in the proficio-core directory to regenerate the
site.

C:\mvnbook\proficio\proficio-core> mvn site

This can be found in the file target/site/surefire-report.html and is shown in figure 6-2.

Figure 6-2: The Surefire report

172

Assessing Project Health with Maven

As you may have noticed in the summary, the report shows the test results of the project.

For a quicker turn around, the report can also be run individually using the following standalone goal:

C:\mvnbook\proficio\proficio-core> mvn surefire-report:report

That's all there is to generating the report! This is possible thanks to key concepts of Maven
discussed in Chapter 2: through a declarative project model, Maven knows where the tests and test
results are, and due to using convention over configuration, the defaults are sufficient to get
started with a useful report.

6.3. Configuration of Reports
Before stepping any further into using the project Web site, it is important to understand how the
report configuration is handled in Maven.

You might recall from Chapter 2 that a plugin is configured using the configuration element inside the
plugin declaration in pom.xml, for example:

[...]
<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.5</source>
 <target>1.5</target>
 </configuration>
 </plugin>
 </plugins>
</build>
[...]

Configuration for a reporting plugin is very similar, however it is added to the reporting section of the
POM. For example, the report can be modified to only show test failures by adding the following
configuration in pom.xml:

173

Better Builds with Maven

[...]
<reporting>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-report-plugin</artifactId>
 <configuration>
 <showSuccess>false</showSuccess>
 </configuration>
 </plugin>
 </plugins>
</reporting>
[...]

The addition of the plugin element triggers the inclusion of the report in the Web site, as seen in the
previous section, while the configuration can be used to modify its appearance or behavior.

If a plugin contains multiple reports, they will all be included.

However, some reports apply to both the site, and the build. To continue with the Surefire report,
consider if you wanted to create a copy of the HTML report in the directory target/surefire-
reports every time the build ran. To do this, the plugin would need to be configured in the build
section instead of, or in addition to, the reporting section:

[...]
<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-report-plugin</artifactId>
 <configuration>
 <outputDirectory>
 ${project.build.directory}/surefire-reports
 </outputDirectory>
 </configuration>
 <executions>
 <execution>
 <phase>test</phase>
 <goals>
 <goal>report</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>
[...]

“Executions” such as this were introduced in Chapter 3. The plugin is included in the build section to
ensure that the configuration, even though it is not specific to the execution, is used only during the
build, and not site generation.

174

Assessing Project Health with Maven

Plugins and their associated configuration that are declared in the build section are not
used during site generation.

However, what if the location of the Surefire XML reports that are used as input (and would be
configured using the reportsDirectory parameter) were different to the default location? Initially,
you might think that you'd need to configure the parameter in both sections. Fortunately, this isn't the
case – adding the configuration to the reporting section is sufficient.

Any plugin configuration declared in the reporting section is also applied to those declared
in the build section.

When you configure a reporting plugin, always place the configuration in the reporting section –
unless one of the following is true:
1. The reports will not be included in the site.
2. The configuration value is specific to the build stage.

When you are configuring the plugins to be used in the reporting section, by default all reports
available in the plugin are executed once. However, there are cases where only some of the reports
that the plugin produces will be required, and cases where a particular report will be run more than
once, each time with a different configuration.

Both of these cases can be achieved with the reportSets element, which is the reporting
equivalent of the executions element in the build section. Each report set can contain configuration,
and a list of reports to include. For example, consider if you had run Surefire twice in your build, once
for unit tests and once for a set of performance tests, and that you had had generated its XML results
to target/surefire-reports/unit and target/surefire-reports/perf respectively.

175

Better Builds with Maven

To generate two HTML reports for these results, you would include the following section in your pom.xml:

[...]
<reporting>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-report-plugin</artifactId>
 <reportSets>
 <reportSet>
 <id>unit</id>
 <configuration>
 <reportsDirectory>
 ${project.build.directory}/surefire-reports/unit
 </reportsDirectory>
 <outputName>surefire-report-unit</outputName>
 </configuration>
 <reports>
 <report>report</report>
 </reports>
 </reportSet>
 <reportSet>
 <id>perf</id>
 <configuration>
 <reportsDirectory>
 ${project.build.directory}/surefire-reports/perf
 </reportsDirectory>
 <outputName>surefire-report-perf</outputName>
 </configuration>
 <reports>
 <report>report</report>
 </reports>
 </reportSet>
 </reportSets>
 </plugin>
 </plugins>
</reporting>
[...]

Running mvn site with this addition will generate two Surefire reports: target/site/surefire-
report-unit.html and target/site/surefire-report-perf.html.

However, as with executions, running mvn surefire-report:report will not use either of these
configurations. When a report is executed individually, Maven will use only the configuration that is
specified in the plugin element itself, outside of any report sets.

The reports element in the report set is a required element. If you want all of the reports in a plugin to
be generated, they must be enumerated in this list. The reports in this list are identified by the goal
names that would be used if they were run from the command line.

176

Assessing Project Health with Maven

It is also possible to include only a subset of the reports in a plugin. For example, to generate only the
mailing list and license pages of the standard reports, add the following to the reporting section of the
pom.xml file:

[...]
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-project-info-reports-plugin</artifactId>
 <reportSets>
 <reportSet>
 <reports>
 <report>mailing-list</report>
 <report>license</report>
 </reports>
 </reportSet>
 </reportSets>
</plugin>
[...]

While the defaults are usually sufficient, this customization will allow you to configure reports in a way
that is just as flexible as your build.

6.4. Separating Developer Reports From User Documentation
After adding a report, there's something subtly wrong with the project Web site. On the entrance page
there are usage instructions for Proficio, which are targeted at an end user, but in the navigation there
are reports about the health of the project, which are targeted at the developers.

This may be confusing for the first time visitor, who isn't interested in the state of the source code,
and an inconvenience to the developer who doesn't want to wade through end user documentation to
find out the current state of a project's test coverage.

This approach to balancing these competing requirements will vary, depending on the project.
Consider the following:

• The commercial product, where the end user documentation is on a completely different server
than the developer information, and most likely doesn't use Maven to generate it;

• The open source graphical application, where the developer information is available, but quite
separate to the end user documentation;

• The open source reusable library, where much of the source code and Javadoc reference is
of interest to the end user.

To determine the correct balance, each section of the site needs to be considered; in some cases
down to individual reports. Table 6-1 lists the content that a project Web site may contain, and the
content's characteristics.

177

Better Builds with Maven

Table 6-1: Project Web site content types

Content Description Updated Distributed Separated

News, FAQs and
general Web site

This is the content that is considered part of the Web
site rather than part of the documentation. Yes No Yes

End user
documentation

This is documentation for the end user including usage
instructions and guides. It refers to a particular version
of the software.

Yes Yes No

Source code
reference material

This is reference material (for example, Javadoc) that
in a library or framework is useful to the end user, but
usually not distributed or displayed in an application.

No Yes No

Project health and
vitality reports

These are the reports discussed in this chapter that
display the current state of the project to the
developers.

Yes No No

In the table, the Updated column indicates whether the content is regularly updated, regardless of
releases. This is true of the news and FAQs, which are based on time and the current state of the
project. Some standard reports, like mailing list information and the location of the issue tracker and
SCM are updated also. It is also true of the project quality and vitality reports, which are continuously
published and not generally of interest for a particular release. However, source code references
should be given a version and remain unchanged after being released.

The situation is different for end user documentation. It is good to update the documentation on the
Web site between releases, and to maintain only one set of documentation.

Features that are available only in more recent releases should be marked to say when they were
introduced. It is important not to include documentation for features that don't exist in the last release,
as it is confusing for those reading the site who expect it to reflect the latest release.

The best compromise between not updating between releases, and not introducing incorrect
documentation, is to branch the end user documentation in the same way as source code. You can
maintain a stable branch, that can be updated between releases without risk of including new
features, and a development branch where new features can be documented for when that version is
released.

The Distributed column in the table indicates whether that form of documentation is typically
distributed with the project. This is typically true for the end user documentation. For libraries and
frameworks, the Javadoc and other reference material are usually distributed for reference as well.
Sometimes these are included in the main bundle, and sometimes they are available for download
separately.

The Separated column indicates whether the documentation can be a separate module or project.
While there are some exceptions, the source code reference material and reports are usually
generated from the modules that hold the source code and perform the build. For a single module
library, including the end user documentation in the normal build is reasonable as it is closely tied to
the source code reference.

178

Assessing Project Health with Maven

However, in most cases, the documentation and Web site should be kept in a separate module
dedicated to generating a site. This avoids including inappropriate report information and navigation
elements.

This separated documentation may be a module of the main project, or maybe totally independent.
You would make it a module when you wanted to distribute it with the rest of the project, but make it
an independent project when it forms the overall site with news and FAQs, and is not distributed with
the project.

It is important to note that none of these are restrictions placed on a project by Maven. While these
recommendations can help properly link or separate content according to how it will be used, you are
free to place content wherever it best suits your project.

In Proficio, the site currently contains end user documentation and a simple report. In the following
example, you will learn how to separate the content and add an independent project for the news and
information Web site.

The current structure of the project is shown in figure 6-3.

Figure 6-3: The initial setup
The first step is to create a module called user-guide for the end user documentation. In this case, a
module is created since it is not related to the source code reference material. This is done using the
site archetype :

C:\mvnbook\proficio> mvn archetype:create -DartifactId=user-guide \
-DgroupId=com.devzuz.mvnbook.proficio \
-DarchetypeArtifactId=maven-archetype-site-simple

179

Better Builds with Maven

This archetype creates a very basic site in the user-guide subdirectory, which you can later add
content to. The resulting structure is shown in figure 6-4.

Figure 6-4: The directory layout with a user guide

The next step is to ensure the layout on the Web site is correct. Previously, the URL and deployment
location were set to the root of the Web site:
http://www.devzuz.com/web/guest/products/resources. Under the current structure,
the development documentation would go to that location, and the user-guide to
http://www.devzuz.com/web/guest/products/resources/user-guide.

In this example, the development documentation will be moved to a /reference/version
subdirectory so that the top level directory is available for a user-facing Web site.

Adding the version to the development documentation, while optional, is useful if you are
maintaining multiple public versions, whether to maintain history or to maintain a release
and a development preview.

First, edit the top level pom.xml file to change the site deployment url:

<distributionManagement>
 <site>
 [...]
 <url>
 scp://devzuz.com/www/library/mvnbook/proficio/reference/${pom.version}
 </url>
 </site>
</distributionManagement>

180

Assessing Project Health with Maven

Next, edit the user-guide/pom.xml file to set the site deployment url for the module:

<distributionManagement>
 <site>
 <id>mvnbook.site</id>
 <url>
 scp://devzuz.com/www/library/mvnbook/proficio/user-guide
 </url>
 </site>
</distributionManagement>

There are now two sub-sites ready to be deployed:
• http://devzuz.com/www/library/mvnbook/proficio/reference/${pom.version}
• http://devzuz.com/www/library/mvnbook/proficio/user-guide

You will not be able to deploy the Web site to the locations
scp://devzuz.com/www/library/mvnbook/proficio/reference/${pom.versi
on} and scp://devzuz.com/www/library/mvnbook/proficio/user-guide.
They are included here only for illustrative purposes.

Now that the content has moved, a top level site for the project is required. This will include news and
FAQs about the project that change regularly.

As before, you can create a new site using the archetype. This time, run it one directory above the
proficio directory, in the Code_Ch06-1 directory.

C:\mvnbook> mvn archetype:create -DartifactId=proficio-site \
-DgroupId=com.devzuz.mvnbook.proficio \
-DarchetypeArtifactId=maven-archetype-site-simple

The resulting structure is shown in figure 6-5.

Figure 6-5: The new Web site

181

Better Builds with Maven

You will need to add the same elements to the POM for the url and distributionManagement
as were set originally for proficio/pom.xml as follows:

[...]
<url>http://www.devzuz.com/web/guest/products/resources</url>
[...]
<distributionManagement>
 <site>
 <id>mvnbook.website</id>
 <url>scp://devzuz.com/www/library/mvnbook/proficio</url>
 </site>
</distributionManagement>
[...]

Next, replace the src/site/apt/index.apt file with a more interesting news page, like the
following:

Proficio

Joe Blogs

23 July 2007

Proficio
 Proficio is super.
 * News
 * <16 Jan 2006> - Proficio project started

Finally, add some menus to src/site/site.xml that point to the other documentation as follows:

[...]
<menu name="Documentation">
 <item name="User's Guide" href="/user-guide/" />
</menu>
<menu name="Reference">
 <item name="API" href="/reference/1.0-SNAPSHOT/apidocs/" />
 <item name="Developer Info" href="/reference/1.0-SNAPSHOT/" />
</menu>
[...]

You can now run mvn site in proficio-site to see how the separate site will look. If you deploy
both sites to a server using mvn site-deploy as you learned in Chapter 3, you will then be able to
navigate through the links and see how they relate.

Note that you haven't produced the apidocs directory yet, so that link won't work even if
the site is deployed. Generating reference documentation is covered in section 6.6 of this
chapter.

182

Assessing Project Health with Maven

The rest of this chapter will focus on using the developer section of the site effectively and how to
build in related conditions to regularly monitor and improve the quality of your project.

6.5. Choosing Which Reports to Include
Choosing which reports to include, and which checks to perform during the build, is an important
decision that will determine the effectiveness of your build reports. Report results and checks
performed should be accurate and conclusive – every developer should know what they mean and
how to address them.

In some instances, the performance of your build will be affected by this choice. In
particular, the reports that utilize unit tests often have to re-run the tests with new
parameters. While future versions of Maven will aim to streamline this, it is recommended
that these checks be constrained to the continuous integration and release environments
if they cause lengthy builds. See Chapter 7, Team Collaboration with Maven, for more
information.

Table 6-2 covers the reports discussed in this chapter and reasons to use them. For each report,
there is also a note about whether it has an associated visual report (for project site inclusion), and an
applicable build check (for testing a certain condition and failing the build if it doesn't pass).

You can use this table to determine which reports apply to your project specifically and limit your
reading to just those relevant sections of the chapter, or you can walk through all of the examples one
by one, and look at the output to determine which reports to use.

While these aren't all the reports available for Maven, the guidelines should help you to determine
whether you need to use other reports.

You may notice that many of these tools are Java-centric. While this is certainly the case
at present, it is possible in the future that reports for other languages will be available, in
addition to the generic reports such as those for dependencies and change tracking.

183

Better Builds with Maven

Table 6-2: Report highlights
Report Description Visual Check Notes

Javadoc Produces an API
reference from
Javadoc.

Yes N/A ✔ Useful for most Java software
✔ Important for any projects publishing a public

API

JXR Produces a source
cross reference for
any Java code.

Yes N/A ✔ Companion to Javadoc that shows the source
code

✔ Important to include when using other reports
that can refer to it, such as Checkstyle

✗ Doesn't handle JDK 5.0 features

Checkstyle Checks your source
code against a
standard descriptor
for formatting issues.

Yes Yes ✔ Use to enforce a standard code style.
✔ Recommended to enhance readability of the

code.
✗ Not useful if there are a lot of errors to be fixed

– it will be slow and the result unhelpful.

PMD Checks your source
code against known
rules for code smells.

Yes Yes ✔ Should be used to improve readability and
identify simple and common bugs.

✔ Some overlap with Checkstyle rules

CPD Part of PMD, checks
for duplicate source
code blocks that
indicates it was
copy/pasted.

Yes No ✔ Can be used to identify lazy copy/pasted code
that might be refactored into a shared method.

✔ Avoids issues when one piece of code is
fixed/updated and the other forgotten

Tag List Simple report on
outstanding tasks or
other markers in
source code

Yes No ✔ Useful for tracking TODO items
✔ Very simple, convenient set up
✔ Can be implemented using Checkstyle rules

instead.

Cobertura Analyze code
statement coverage
during unit tests or
other code execution.

Yes Yes ✔ Recommended for teams with a focus on tests
✔ Can help identify untested or even unused

code.
✗ Doesn't identify all missing or inadequate tests,

so additional tools may be required.

Surefire
Report

Show the results of
unit tests visually.

Yes Yes ✔ Recommended for easier browsing of results.
✔ Can also show any tests that are long running

and slowing the build.
✔ Check already performed by surefire:test.

Dependency
Convergence

Examine the state of
dependencies in a
multiple module build

Yes No ✔ Recommended for multiple module builds
where consistent versions are important.

✔ Can help find snapshots prior to release.

184

Assessing Project Health with Maven

Report Description Visual Check Notes

Clirr Compare two versions
of a JAR for binary
compatibility

Yes Yes ✔ Recommended for libraries and frameworks
with a public API

✔ Also important for reviewing changes to the
internal structure of a project that are still
exposed publicly.

Changes Produce release notes
and road maps from
issue tracking systems

Yes N/A ✔ Recommended for all publicly released
projects.

✔ Should be used for keeping teams up to date on
internal projects also.

6.6. Creating Reference Material
Source code reference materials are usually the first reports configured for a new project, because it
is often of interest to the end user of a library or framework, as well as to the developer of the project
itself.

The two reports this section illustrates are:

• JXR – the Java source cross reference, and,
• Javadoc – the Java documentation tool

You can get started with JXR on the example project very quickly, by running the following command:

C:\mvnbook\proficio\proficio-core> mvn jxr:jxr

You should now see a target/site/xref/index.html created.

185

Better Builds with Maven

Figure 6-6: An example source code cross reference

Figure 6-6 shows an example of the cross reference. Those familiar with Javadoc will recognize the
framed navigation layout, however the content pane is now replaced with a syntax-highlighted, cross-
referenced Java source file for the selected class. The hyper links in the content pane can be used to
navigate to other classes and interfaces within the cross reference.

A useful way to leverage the cross reference is to use the links given for each line number in a source
file to point team mates at a particular piece of code. Or, if you don't have the project open in your
IDE, the links can be used to quickly find the source belonging to a particular exception.

Including JXR as a permanent fixture of the site for the project is simple, and can be done by adding
the following to proficio/pom.xml:

[...]
<reporting>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jxr-plugin</artifactId>
 </plugin>
 [...]
 </plugins>
</reporting>
[...]

186

Assessing Project Health with Maven

You can now run mvn site in proficio-core and see target/site/project-
reports.html created. This page contains the Source Xref and the Test Source Xref items listed
in the Project Reports menu of the generated site.

In most cases, the default JXR configuration is sufficient, however if you'd like a list of available
configuration options, see the plugin reference at http://maven.apache.org/plugins/maven-jxr-plugin/.

Now that you have a source cross reference, many of the other reports demonstrated in this chapter
will be able to link to the actual code to highlight an issue. However, browsing source code is too
cumbersome for the developer if they only want to know about how the API works, so an equally
important piece of reference material is the Javadoc report.

A Javadoc report is only as good as your Javadoc! Make sure you document the methods you
intend to display in the report, and if possible use Checkstyle to ensure they are documented.

Using Javadoc is very similar to the JXR report and most other reports in Maven. Again, you can run it
on its own using the following command:

C:\mvnbook\proficio\proficio-core> mvn javadoc:javadoc

Since it will be included as part of the project site, you should include it in proficio/pom.xml as a
site report to ensure it is run every time the site is regenerated:

[...]
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-javadoc-plugin</artifactId>
</plugin>
[...]

The end result is the familiar Javadoc output, in target/site/apidocs.

Unlike JXR, the Javadoc report is quite configurable, with most of the command line options of the
Javadoc tool available.

One useful option to configure is links. In the online mode, this will link to an external Javadoc
reference at a given URL.

For example, the following configuration, when added to proficio/pom.xml, will link both the JDK
1.5 API documentation and the Plexus container API documentation used by Proficio:

187

http://maven.apache.org/plugins/maven-jxr-plugin/

Better Builds with Maven

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-javadoc-plugin</artifactId>
 <configuration>
 <links>
 <link>http://java.sun.com/j2se/1.5.0/docs/api</link>
 <link>http://plexus.codehaus.org/ref/1.0-alpha-9/apidocs</link>
 </links>
 </configuration>
</plugin>

If you regenerate the site in proficio-core with mvn site again, you'll see that all references to
the standard JDK classes such as java.lang.String and java.lang.Object, are linked to API
documentation on the Sun Web site, as well as any references to classes in Plexus.

Setting up Javadoc has been very convenient, but it results in a separate set of API documentation for
each library in a multi-module build. Since it is preferred to have discrete functional pieces separated
into distinct modules, but conversely to have the Javadoc closely related, this is not sufficient.

One option would be to introduce links to the other modules (automatically generated by Maven
based on dependencies, of course!), but this would still limit the available classes in the navigation as
you hop from module to module. Instead, the Javadoc plugin provides a way to produce a single set
of API documentation for the entire project.

Edit the configuration of the existing Javadoc plugin in proficio/pom.xml by adding the following
line:

[...]
<configuration>
 <aggregate>true</aggregate>
 [...]
</configuration>
[...]

When built from the top level project, this simple change will produce an aggregated Javadoc and
ignore the Javadoc report in the individual modules. This setting must go into the reporting section so
that it is used for both reports and if the command is executed separately. However, this setting is
always ignored by the javadoc:jar goal, ensuring that the deployed Javadoc corresponds directly
to the artifact with which it is deployed for use in an IDE.

Try running mvn clean javadoc:javadoc in the proficio directory to produce the aggregated
Javadoc in target/site/apidocs/index.html.

Now that the sample application has a complete reference for the source code, the next section will
allow you to start monitoring and improving its health.

188

Assessing Project Health with Maven

6.7. Monitoring and Improving the Health of Your Source Code
There are several factors that contribute to the health of your source code:

• Accuracy – whether the code does what it is expected to do
• Robustness – whether the code gracefully handles exceptional conditions
• Extensibility – how easily the code can be changed without affecting accuracy or requiring

changes to a large amount of other code
• Readability – how easily the code can be understood (in a team environment, this is

important for both the efficiency of other team members and also to increase the overall
level of code comprehension, which in turn reduces the risk that its accuracy will be affected
by change)

Maven has reports that can help with each of these health factors, and this section will look at three:

• PMD (http://pmd.sf.net/)
• Checkstyle (http://checkstyle.sf.net/)
• Tag List

PMD takes a set of either predefined or user-defined rule sets and evaluates the rules across your
Java source code. The result can help identify bugs, copy-and-pasted code, and violations of a coding
standard. Figure 6-7 shows the output of a PMD report on proficio-core, which is obtained by
running mvn pmd:pmd.

Figure 6-7: An example PMD report

189

http://checkstyle.sf.net/
http://pmd.sf.net/

Better Builds with Maven

As you can see, some source files are identified as having problems that could be addressed, such as
unused methods and variables. Also, since the JXR report was included earlier, the line numbers in
the report are linked to the actual source code so you can browse the issues.

Adding the default PMD report to the site is just like adding any other report – you can include it in the
reporting section in the proficio/pom.xml file:

[...]
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-pmd-plugin</artifactId>
</plugin>
[...]

The default PMD report includes the basic, unused code, and imports rule sets. The “basic” rule set
includes checks on empty blocks, unnecessary statements and possible bugs – such as incorrect loop
variables. The “unused code” rule set will locate unused private fields, methods, variables and
parameters. The “imports” rule set will detect duplicate, redundant or unused import declarations.

Adding new rule sets is easy, by passing the rulesets configuration to the plugin. However, if you
configure these, you must configure all of them – including the defaults explicitly. For example, to
include the default rules, and the finalizer rule sets, add the following to the plugin configuration
you declared earlier:

[...]
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-pmd-plugin</artifactId>
 <configuration>
 <rulesets>
 <ruleset>/rulesets/basic.xml</ruleset>
 <ruleset>/rulesets/imports.xml</ruleset>
 <ruleset>/rulesets/unusedcode.xml</ruleset>
 <ruleset>/rulesets/finalizers.xml</ruleset>
 </rulesets>
 </configuration>
</plugin>
[...]

190

Assessing Project Health with Maven

You may find that you like some rules in a rule set, but not others. Or, you may use the same rule sets
in a number of projects. In either case, you can choose to create a custom rule set. For example, you
could create a rule set with all the default rules, but exclude the “unused private field” rule. To try this,
create a file in the proficio-core directory of the sample application called
src/main/pmd/custom.xml, with the following content:

<?xml version="1.0"?>
<ruleset name="custom">
 <description>
 Default rules, no unused private field warning
 </description>
 <rule ref="/rulesets/basic.xml" />
 <rule ref="/rulesets/imports.xml" />
 <rule ref="/rulesets/unusedcode.xml">
 <exclude name="UnusedPrivateField" />
 </rule>
</ruleset>

To use this rule set, override the configuration in the proficio-core/pom.xml file by adding:

[...]
<reporting>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-pmd-plugin</artifactId>
 <configuration>
 <rulesets>
 <ruleset>${basedir}/src/main/pmd/custom.xml</ruleset>
 </rulesets>
 </configuration>
 </plugin>
 </plugins>
</reporting>
[...]

For more examples on customizing the rule sets, see the instructions on the PMD Web site at
http://pmd.sf.net/howtomakearuleset.html. It is also possible to write your own rules if you find that
existing ones do not cover recurring problems in your source code.

One important question is how to select appropriate rules. For PMD, try the following guidelines from
the Web site at http://pmd.sf.net/bestpractices.html:

• Pick the rules that are right for you. There is no point having hundreds of violations you won't
fix.

• Start small, and add more as needed. basic, unusedcode, and imports are useful in most
scenarios and easily fixed. From this starting, select the rules that apply to your own project.

If you've done all the work to select the right rules and are correcting all the issues being discovered,
you need to make sure it stays that way.

191

http://pmd.sourceforge.net/bestpractices.html
http://pmd.sourceforge.net/howtomakearuleset.html

Better Builds with Maven

Try this now by running mvn pmd:check on proficio-core. You'll see that the build fails with the
following 3 errors:

[INFO] ---
[INFO] Building Maven Proficio Core
[INFO] task-segment: [pmd:check]
[INFO] ---
[INFO] Preparing pmd:check
[INFO] [pmd:pmd]
[INFO] [pmd:check]
[INFO] ---
[ERROR] BUILD FAILURE
[INFO] ---
[INFO] You have 3 PMD violations.
[INFO] ---

Before correcting these errors, you should include the check in the build, so that it is regularly tested.
This is done by binding the goal to the build life cycle. To do so, add the following section to the
proficio/pom.xml file:

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-pmd-plugin</artifactId>
 <executions>
 <execution>
 <goals>
 <goal>check</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 [...]
 </plugins>
</build>

You may have noticed that there is no configuration here, but recall from Configuring
Reports and Checks section of this chapter that the reporting configuration is applied to
the build as well.

By default, the pmd:check goal is run in the verify phase, which occurs after the packaging phase. If
you need to run checks earlier, you could add the following to the execution block to ensure that the
check runs just after all sources exist:

<phase>process-sources</phase>

To test this new setting, try running mvn verify in the proficio-core directory. You will see that
the build fails. To correct this, fix the errors in the
src/main/java/com/devzuz/mvnbook/proficio/DefaultProficio.java file by adding
a //NOPMD comment to the unused variables and method:

192

Assessing Project Health with Maven

[...]
// Trigger PMD and checkstyle
int i; // NOPMD
[...]
int j; // NOPMD
[...]
private void testMethod() // NOPMD
{
}
[...]

If you run mvn verify again, the build will succeed.

While this check is very useful, it can be slow and obtrusive during general development. For that
reason, adding the check to a profile, which is executed only in an appropriate environment, can make
the check optional for developers, but mandatory in an integration environment. See Continuous
Integration with Continuum section in the next chapter for information on using profiles and
continuous integration.

While the PMD report allows you to run a number of different rules, there is one that is in a separate
report. This is the CPD, or copy/paste detection report, and it includes a list of duplicate code
fragments discovered across your entire source base. An example report is shown in figure 6-8.This
report is included by default when you enable the PMD plugin in your reporting section, and will
appear as “CPD report” in the Project Reports menu.

Figure 6-8: An example CPD report

193

Better Builds with Maven

In a similar way to the main check, pmd:cpd-check can be used to enforce a failure if duplicate
source code is found. However, the CPD report contains only one variable to configure:
minimumTokenCount, which defaults to 100. With this setting you can fine tune the size of the
copies detected. This may not give you enough control to effectively set a rule for the source code,
resulting in developers attempting to avoid detection by making only slight modifications, rather than
identifying a possible factoring of the source code. Whether to use the report only, or to enforce a
check will depend on the environment in which you are working.

There are other alternatives for copy and paste detection, such as Checkstyle, and a commercial
product called Simian (http://www.redhillconsulting.com.au/products/simian/). Simian can also be used
through Checkstyle and has a larger variety of configuration options for detecting duplicate source
code.

Checkstyle is a tool that is, in many ways, similar to PMD. It was originally designed to address issues
of format and style, but has more recently added checks for other code issues.

Depending on your environment, you may choose to use it in one of the following ways:

• Use it to check code formatting only, and rely on other tools for detecting other problems.
• Use it to check code formatting and selected other problems, and still rely on other tools for

greater coverage.
• Use it to check code formatting and to detect other problems exclusively

This section focuses on the first usage scenario. If you need to learn more about the available
modules in Checkstyle, refer to the list on the Web site at
http://checkstyle.sf.net/availablechecks.html.

Figure 6-9 shows the Checkstyle report obtained by running mvn checkstyle:checkstyle from
the proficio-core directory. Some of the extra summary information for overall number of errors
and the list of checks used has been trimmed from this display.

194

http://checkstyle.sf.net/availablechecks.html
http://www.redhillconsulting.com.au/products/simian/

Assessing Project Health with Maven

Figure 6-9: An example Checkstyle report

You'll see that each file with notices, warnings or errors is listed in a summary, and then the errors are
shown, with a link to the corresponding source line – if the JXR report was enabled.

That's a lot of errors! By default, the rules used are those of the Sun Java coding conventions, but
Proficio is using the Maven team's code style.

This style is also bundled with the Checkstyle plugin, so to include the report in the site and configure
it to use the Maven style, add the following to the reporting section of proficio/pom.xml:

[...]
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-checkstyle-plugin</artifactId>
 <configuration>
 <configLocation>config/maven_checks.xml</configLocation>
 </configuration>
</plugin>

195

Better Builds with Maven

Table 6-3 shows the configurations that are built into the Checkstyle plugin.

Table 6-3: Built-in Checkstyle configurations

Configuration Description Reference
config/sun_checks.xml Sun Java Coding

Conventions
http://java.sun.com/docs/codeconv/

config/maven_checks.xml Maven team's coding
conventions

http://maven.apache.org/guides/development/guide-
m2-development.html#Maven%20Code%20Style

config/turbine_checks.xml Conventions from the
Jakarta Turbine project

http://jakarta.apache.org/turbine/common/code-
standards.html

config/avalon_checks.xml Conventions from the
Apache Avalon project

No longer online – the Avalon project has closed.
These checks are for backwards compatibility only.

The configLocation parameter can be set to a file within your build, a URL, or a resource within a
special dependency also.

It is a good idea to reuse an existing Checkstyle configuration for your project if possible – if the style
you use is common, then it is likely to be more readable and easily learned by people joining your
project. The built-in Sun and Maven standards are quite different, and typically, one or the other will
be suitable for most people. However, if you have developed a standard that differs from these, or
would like to use the additional checks introduced in Checkstyle 3.0 and above, you will need to
create a Checkstyle configuration.

While this chapter will not go into an example of how to do this, the Checkstyle documentation
provides an excellent reference at http://checkstyle.sf.net/config.html.

The Checkstyle plugin itself has a large number of configuration options that allow you to customize
the appearance of the report, filter the results, and to parameterize the Checkstyle configuration for
creating a baseline organizational standard that can be customized by individual projects. It is also
possible to share a Checkstyle configuration among multiple projects, as explained at
http://maven.apache.org/plugins/maven-checkstyle-plugin/tips.html.

Before completing this section it is worth mentioning the Tag List plugin. This report, known as “Task
List” in Maven 1.0, will look through your source code for known tags and provide a report on those it
finds. By default, this will identify the tags TODO and @todo in the comments of your source code.

196

http://maven.apache.org/plugins/maven-checkstyle-plugin/tips.html
http://checkstyle.sourceforge.net/config.html
http://jakarta.apache.org/turbine/common/code-standards.html
http://jakarta.apache.org/turbine/common/code-standards.html
http://maven.apache.org/guides/development/guide-m2-development.html#Maven Code Style
http://maven.apache.org/guides/development/guide-m2-development.html#Maven Code Style
http://java.sun.com/docs/codeconv/

Assessing Project Health with Maven

To try this plugin, add the following to the reporting section of proficio/pom.xml:

[...]
<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>taglist-maven-plugin</artifactId>
 <configuration>
 <tags>
 <tag>TODO</tag>
 <tag>@todo</tag>
 <tag>FIXME</tag>
 <tag>XXX</tag>
 </tags>
 </configuration>
</plugin>
[...]

This configuration will locate any instances of TODO, @todo, FIXME, or XXX in your source code. It is
actually possible to achieve this using Checkstyle or PMD rules, however this plugin is a more
convenient way to get a simple report of items that need to be addressed at some point later in time.

PMD, Checkstyle, and Tag List are just three of the many tools available for assessing the health of
your project's source code. Some other similar tools, such as FindBugs, JavaNCSS and JDepend,
have beta versions of plugins available from the http://mojo.codehaus.org/ project at the time of this
writing, and more plugins are being added every day.

6.8. Monitoring and Improving the Health of Your Tests
One of the important (and often controversial) features of Maven is the emphasis on testing as part of
the production of your code. In the build life cycle defined in Chapter 2, you saw that tests are run
before the packaging of the library or application for distribution, based on the theory that you
shouldn't even try to use something before it has been tested. There are additional testing stages that
can occur after the packaging step to verify that the assembled package works under other
circumstances.

As you learned in section 6.2, Setting Up the Project Web Site, it is easy to add a report to the Web
site that shows the results of the tests that have been run. While the default Surefire configuration
fails the build if the tests fail, the report (run either on its own, or as part of the site), will ignore these
failures when generated to show the current test state. Failing the build is still recommended – but the
report allows you to provide a better visual representation of the results. In addition to that, it can be a
useful report for demonstrating the number of tests available and the time it takes to run certain tests
for a package.

Knowing whether your tests pass is an obvious and important assessment of their health. Another
critical technique is to determine how much of your source code is covered by the test execution. At
the time of writing, for assessing coverage, Cobertura (http://cobertura.sf.net) is the open source tool
best integrated with Maven. While you are writing your tests, using this report on a regular basis can
be very helpful in spotting any holes in the test plan.

197

http://cobertura.sf.net/
http://mojo.codehaus.org/

Better Builds with Maven

To see what Cobertura is able to report, run mvn cobertura:cobertura in the proficio-core
directory of the sample application. Figure 6-10 shows the output that you can view in
target/site/cobertura/index.html.

The report contains both an overall summary, and a line-by-line coverage analysis of each source file,
in the familiar Javadoc style framed layout. For a source file, you'll notice the following markings:

• Unmarked lines are those that do not have any executable code associated with them.
This includes method and class declarations, comments and white space.

• Each line with an executable statement has a number in the second column that indicates
during the test run how many times a particular statement was run.

• Lines in red are statements that were not executed (if the count is 0), or for which all
possible branches were not executed. For example, a branch is an if statement that can
behave differently depending on whether the condition is true or false.

Unmarked lines with a green number in the second column are those that have been completely
covered by the test execution.

Figure 6-10: An example Cobertura report

198

Assessing Project Health with Maven

The complexity indicated in the top right is the cyclomatic complexity of the methods in the class,
which measures the number of branches that occur in a particular method. High numbers (for
example, over 10), might indicate a method should be re-factored into simpler pieces, as it can be
hard to visualize and test the large number of alternate code paths. If this is a metric of interest, you
might consider having PMD monitor it.

The Cobertura report doesn't have any notable configuration, so including it in the site is simple. Add
the following to the reporting section of proficio/pom.xml:

[...]
<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>cobertura-maven-plugin</artifactId>
</plugin>
[...]

If you now run mvn site under proficio-core, the report will be generated in
target/site/cobertura/index.html.

While not required, there is another useful setting to add to the build section. Due to a hard-coded
path in Cobertura, the database used is stored in the project directory as cobertura.ser, and is not
cleaned with the rest of the project. To ensure that this happens, add the following to the build section
of proficio/pom.xml:

[...]
<build>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>cobertura-maven-plugin</artifactId>
 <executions>
 <execution>
 <id>clean</id>
 <goals>
 <goal>clean</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>
[...]

If you now run mvn clean in proficio-core, you'll see that the cobertura.ser file is deleted,
as well as the target directory.

The Cobertura plugin also contains a goal called cobertura:check that is used to ensure that the
coverage of your source code is maintained at a certain percentage.

199

Better Builds with Maven

To configure this goal for Proficio, add a configuration and another execution to the build plugin
definition you added above when cleaning the Cobertura database:

[...]
<configuration>
 <check>
 <totalLineRate>100</totalLineRate>
 <totalBranchRate>100</totalBranchRate>
 </check>
</configuration>
<executions>
 [...]
 <execution>
 <id>check</id>
 <goals>
 <goal>check</goal>
 </goals>
 </execution>
</executions>
[...]

Note that the configuration element is outside of the executions. This ensures that if you run mvn
cobertura:check from the command line, the configuration will be applied. This wouldn't be the
case if it were associated with the life-cycle bound check execution.

If you now run mvn verify under proficio-core, the check will be performed.

You'll notice that your tests are run twice. This is because Cobertura needs to instrument
your class files, and the tests are re-run using those class files instead of the normal ones
(however, these are instrumented in a separate directory, so are not packaged in your
application). The Surefire report may also re-run tests if they were already run – both of
these are due to a limitation in the way the life cycle is constructed that will be improved in
future versions of Maven.

The rules that are being used in this configuration are 100% overall line coverage rate, and 100%
branch coverage rate. You would have seen in the previous examples that there were some lines not
covered, so running the check fails.

Normally, you would add unit tests for the functions that are missing tests, as in the Proficio example.
However, looking through the report, you may decide that only some exceptional cases are untested,
and decide to reduce the overall average required. You can do this for Proficio to have the tests pass
by changing the setting in proficio/pom.xml:

[...]
<configuration>
 <check>
 <totalLineRate>80</totalLineRate>
[...]

If you run mvn verify again, the check passes.

200

Assessing Project Health with Maven

These settings remain quite demanding though, only allowing a small number of lines to be untested.
This will allow for some constructs to remain untested, such as handling checked exceptions that are
unexpected in a properly configured system and difficult to test. It is just as important to allow these
exceptions, as it is to require that the other code be tested. Remember, the easiest way to increase
coverage is to remove code that handles untested, exceptional cases – and that's certainly not
something you want!

The settings above are requirements for averages across the entire source tree. You may want to
enforce this for each file individually as well, using lineRate and branchRate, or as the average
across each package, using packageLineRate and packageBranchRate. It is also possible to
set requirements on individual packages or classes using the regexes parameter. For more
information, refer to the Cobertura plugin configuration reference at
http://mojo.codehaus.org/cobertura-maven-plugin.

Choosing appropriate settings is the most difficult part of configuring any of the reporting metrics in
Maven. Some helpful hints for determining the right code coverage settings are:

• Like all metrics, involve the whole development team in the decision, so that they understand
and agree with the choice.

• Don't set it too low, as it will become a minimum benchmark to attain and rarely more.
• Don't set it too high, as it will discourage writing code to handle exceptional cases that aren't

being tested.
• Set some known guidelines for what type of code can remain untested.
• Consider setting any package rates higher than the per-class rate, and setting the total rate

higher than both.
• Remain flexible – consider changes over time rather than hard and fast rules. Choose to

reduce coverage requirements on particular classes or packages rather than lowering
them globally.

Cobertura is not the only solution available for assessing test coverage. The best known commercial
offering is Clover, which is very well integrated with Maven as well. It behaves very similarly to
Cobertura, and you can evaluate it for 30 days when used in conjunction with Maven. For more
information, see the Clover plugin reference on the Maven Web site at
http://maven.apache.org/plugins/maven-clover-plugin/.

Of course, there is more to assessing the health of tests than success and coverage. These reports
won't tell you if all the features have been implemented – this requires functional or acceptance
testing. It also won't tell you whether the results of untested input values produce the correct results.
Tools like Jester (http://jester.sf.net), although not yet integrated with Maven directly, may be of
assistance there. Jester mutates the code that you've already determined is covered and checks that
it causes the test to fail when run a second time with the wrong code.

To conclude this section on testing, it is worth noting that one of the benefits of Maven's use of the
Surefire abstraction is that the tools above will work for any type of runner introduced. For example,
Surefire supports tests written with TestNG, and at the time of writing experimental JUnit 4.0 support
is also available. In both cases, these reports work unmodified with those test types. If you have
another tool that can operate under the Surefire framework, it is possible for you to write a provider to
use the new tool, and get integration with these other tools for free.

201

http://jester.sf.net/
http://maven.apache.org/plugins/maven-clover-plugin/
http://mojo.codehaus.org/cobertura-maven-plugin

Better Builds with Maven

6.9. Monitoring and Improving the Health of Your Dependencies
Many people use Maven primarily as a dependency manager. While this is only one of Maven's
features, used well it is a significant time saver.

Maven 2.0 introduced transitive dependencies, where the dependencies of dependencies are included
in a build, and a number of other features such as scoping and version selection. This brought much
more power to Maven's dependency mechanism, but does introduce a drawback: poor dependency
maintenance or poor scope and version selection affects not only your own project, but any projects
that depend on your project. Left unchecked, the full graph of a project's dependencies can quickly
balloon in size and start to introduce conflicts.

The first step to effectively maintaining your dependencies is to review the standard report included
with the Maven site. If you haven't done so already, run mvn site in the proficio-core directory,
and browse to the file generated in target/site/dependencies.html. The result is shown in
figure 6-11.

Figure 6-11: An example dependency report

202

Assessing Project Health with Maven

This report shows detailed information about your direct dependencies, but more importantly in the
second section it will list all of the transitive dependencies included through those dependencies. It's
here that you might see something that you didn't expect – an extra dependency, an incorrect version,
or an incorrect scope – and choose to investigate its inclusion.

Currently, this requires running your build with debug turned on, such as mvn -X package. This will
output the dependency tree as it is calculated, using indentation to indicate which dependencies
introduce other dependencies, as well as comments about what versions and scopes are selected,
and why. For example, here is the resolution process of the dependencies of proficio-core (some
fields have been omitted for brevity):

proficio-core:1.0-SNAPSHOT
 junit:3.8.1 (selected for test)
 plexus-container-default:1.0-alpha-9 (selected for compile)
 plexus-utils:1.0.4 (selected for compile)
 classworlds:1.1-alpha-2 (selected for compile)
 junit:3.8.1 (not setting scope to: compile; local scope test wins)
 proficio-api:1.0-SNAPSHOT (selected for compile)
 proficio-model:1.0-SNAPSHOT (selected for compile)

Here you can see that, for example, proficio-model is introduced by proficio-api, and that
plexus-container-default attempts to introduce junit as a compile dependency, but that it is
overridden by the test scoped dependency in proficio-core.

This can be quite difficult to read, so at the time of this writing there are two features in progress that
are aimed at helping in this area:

• The Maven Repository Manager will allow you to navigate the dependency tree through the
metadata stored in the Ibiblio8 repository.

• A dependency graphing plugin that will render a graphical representation of the
information.

Another report that is available is the “Dependency Convergence Report”. This report is also a
standard report, but appears in a multi-module build only. To see the report for the Proficio project,
run mvn site from the base proficio directory. The file target/site/dependency-
convergence.html will be created, and is shown in figure 6-12.

The report shows all of the dependencies included in all of the modules within the project. It also
includes some statistics and reports on two important factors:

• Whether the versions of dependencies used for each module is in alignment. This helps
ensure your build is consistent and reduces the probability of introducing an accidental
incompatibility.

• Whether there are outstanding SNAPSHOT dependencies in the build, which indicates
dependencies that are in development, and must be updated before the project can be
released.

8 Artifacts can also be obtained from http://repo.devzuz.com/archiva/repository/maven2/ and
http://repo1.maven.org/maven2/.

203

http://repo1.maven.org/maven2/
http://repo.devzuz.com/archiva/repository/maven2/

Better Builds with Maven

Figure 6-12: The dependency convergence report

These reports are passive – there are no associated checks for them. However, they can provide
basic help in identifying the state of your dependencies once you know what to find. To improve your
project's health and the ability to reuse it as a dependency itself, try the following recommendations
for your dependencies:

• Look for dependencies in your project that are no longer used
• Check that the scope of your dependencies are set correctly (to test if only used for unit tests,

or runtime if it is needed to bundle with or run the application but not for compiling your source
code).

• Use a range of supported dependency versions, declaring the absolute minimum supported as
the lower boundary, rather than using the latest available. You can control what version is actually
used by declaring the dependency version in a project that packages or runs the application.

• Add exclusions to dependencies to remove poorly defined dependencies from the tree.
This is particularly the case for dependencies that are optional and unused by your project.

204

Assessing Project Health with Maven

Given the importance of this task, more tools are needed in Maven. Two that are in progress were
listed above, but there are plans for more:

• A class analysis plugin that helps identify dependencies that are unused in your current project
• Improved dependency management features including different mechanisms for selecting

versions that will allow you to deal with conflicting versions, specification dependencies
that let you depend on an API and manage the implementation at runtime, and more.

6.10. Monitoring and Improving the Health of Your Releases
Releasing a project is one of the most important procedures you will perform, but it is often tedious
and error prone. While the next chapter will go into more detail about how Maven can help automate
that task and make it more reliable, this section will focus on improving the quality of the code
released, and the information released with it.

An important tool in determining whether a project is ready to be released is Clirr (http://clirr.sf.net/).
Clirr detects whether the current version of a library has introduced any binary incompatibilities with
the previous release. Catching these before a release can eliminate problems that are quite difficult to
resolve once the code is “in the wild”. An example Clirr report is shown in figure 6-13.

Figure 6-13: An example Clirr report

This is particularly important if you are building a library or framework that will be consumed by
developers outside of your own project.

Libraries will often be substituted by newer versions to obtain new features or bug fixes, but then
expected to continue working as they always have.

Because existing libraries are not recompiled every time a version is changed, there is no verification
that a library is binary-compatible – incompatibility will be discovered only when there's a failure.

205

http://clirr.sf.net/

Better Builds with Maven

But does binary compatibility apply if you are not developing a library for external consumption? While
it may be of less importance, the answer here is clearly – yes. As a project grows, the interactions
between the project's own components will start behaving as if they were externally-linked. Different
modules may use different versions, or a quick patch may need to be made and a new version
deployed into an existing application.

This is particularly true in a Maven-based environment, where the dependency mechanism is based
on the assumption of binary compatibility between versions. While methods of marking incompatibility
are planned for future versions, Maven currently works best if any version of an artifact is backwards
compatible, back to the first release.

By default, the Clirr report shows only errors and warnings. However, you can configure the plugin to
show all informational messages, by setting the minSeverity parameter. This gives you an
overview of all the changes since the last release, even if they are binary compatible. To see this in
action, add the following to the reporting section of proficio-api/pom.xml:

[...]
<reporting>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>clirr-maven-plugin</artifactId>
 <configuration>
 <minSeverity>info</minSeverity>
 </configuration>
 </plugin>
 </plugins>
</reporting>
[...]

If you run mvn clirr:clirr in proficio-api, the report will be generated in
target/site/clirr-report.html.

If you run this command, you'll notice that Maven reports that it is using version 0.9 of proficio-
api against which to compare (and that it is downloaded if you don't have it already):

[...]
[INFO] [clirr:clirr]
[INFO] Comparing to version: 0.9
[INFO] ---
[INFO] BUILD SUCCESSFUL
[INFO] ---
[...]

This version is determined by looking for the newest release in repository, that is before the current
development version.

Note: The older versions of proficio-api are retrieved from the repository. However,
you may need to install the artifacts yourself, which you can do by extracting the
Code_Ch06-2.zip file and installing its contents in your local repository. Issue the mvn
install command from each sub-directory: proficio-0.8 and proficio-0.9.

206

Assessing Project Health with Maven

You can change the version used with the comparisonVersion parameter. For example, to
compare the current code to the 0.8 release, run the following command:

mvn clirr:clirr -DcomparisonVersion=0.8

You'll notice there are a more errors in the report, since this early development version had a different
API, and later was redesigned to make sure that version 1.0 would be more stable in the long run.

It is best to make changes earlier in the development cycle, so that fewer people are affected. The
longer poor choices remain, the harder they are to change as adoption increases. Once a version has
been released that is intended to remain binary-compatible going forward, it is almost always
preferable to deprecate an old API and add a new one, delegating the code, rather than removing or
changing the original API and breaking binary compatibility.

In this instance, you are monitoring the proficio-api component for binary compatibility changes
only. This is the most important one to check, as it will be used as the interface into the
implementation by other applications. If it is the only one that the development team will worry about
breaking, then there is no point in checking the others – it will create noise that devalues the report's
content in relation to the important components.

However, if the team is prepared to do so, it is a good idea to monitor as many components as
possible. Even if they are designed only for use inside the project, there is nothing in Java preventing
them from being used elsewhere, and it can assist in making your own project more stable.

Like all of the quality metrics, it is important to agree up front, on the acceptable incompatibilities, to
discuss and document the practices that will be used, and to check them automatically. The Clirr
plugin is also capable of automatically checking for introduced incompatibilities through the
clirr:check goal.

To add the check to the proficio-api/pom.xml file, add the following to the build section:

[...]
<build>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>clirr-maven-plugin</artifactId>
 <executions>
 <execution>
 <goals>
 <goal>check</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 [...]
 </plugins>
</build>
[...]

If you now run mvn verify, you will see that the build fails due to the binary incompatibility
introduced between the 0.9 preview release and the final 1.0 version. Since this was an acceptable
incompatibility due to the preview nature of the 0.9 release, you can choose to exclude that from the
report by adding the following configuration to the plugin:

207

Better Builds with Maven

[...]
<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>clirr-maven-plugin</artifactId>
 <configuration>
 <excludes>
 <exclude>**/Proficio</exclude>
 </excludes>
 </configuration>
 [...]
</plugin>

This will prevent failures in the Proficio class from breaking the build in the future. Note that in this
instance, it is listed only in the build configuration, so the report still lists the incompatibility. This
allows the results to be collected over time to form documentation about known incompatibilities for
applications using the library.

A limitation of this feature is that it will eliminate a class entirely, not just the one acceptable failure.
Hopefully a future version of Clirr will allow acceptable incompatibilities to be documented in the
source code, and ignored in the same way that PMD does.

With this simple setup, you can create a very useful mechanism for identifying potential release
disasters much earlier in the development process, and then act accordingly. While the topic of
designing a strong public API and maintaining binary compatibility is beyond the scope of this book,
the following articles and books can be recommended:

• Evolving Java-based APIs contains a description of the problem of maintaining binary
compatibility, as well as strategies for evolving an API without breaking it.

• Effective Java describes a number of practical rules that are generally helpful to writing
code in Java, and particularly so if you are designing a public API.

A similar tool to Clirr that can be used for analyzing changes between releases is JDiff. Built as a
Javadoc doclet, it takes a very different approach, taking two source trees and comparing the
differences in method signatures and Javadoc annotations. This can be useful in getting a greater
level of detail than Clirr on specific class changes. However, it will not pinpoint potential problems for
you, and so is most useful for browsing. It has a functional Maven 2 plugin, which is available at
http://mojo.codehaus.org/jdiff-maven-plugin.

208

http://mojo.codehaus.org/jdiff-maven-plugin
http://java.sun.com/docs/books/effective/
http://www.eclipse.org/eclipse/development/java-api-evolution.html

Assessing Project Health with Maven

6.11. Viewing Overall Project Health
In the previous sections of this chapter, a large amount of information was presented about a project,
each in discrete reports. Some of the reports linked to one another, but none related information from
another report to itself, and few of the reports aggregated information across a multiple module build.
Finally, none of the reports presented how the information changes over time other than the release
announcements. These are all important features to have to get an overall view of the health of a
project. While some attempts were made to address this in Maven 1.0 (for example, the Dashboard
plugin), they did not address all of these requirements, and have not yet been implemented for Maven
2.0.

However, it should be noted that the Maven reporting API was written with these requirements in mind
specifically, and as the report set stabilizes – summary reports will start to appear.

In the absence of these reports, enforcing good, individual checks that fail the build when they're not
met, will reduce the need to gather information from various sources about the health of the project,
as there is a constant background monitor that ensures the health of the project is being maintained.

6.12. Summary
The power of Maven's declarative project model is that with a very simple setup (often only 4 lines in
pom.xml), a new set of information about your project can be added to a shared Web site to help
your team visualize the health of the project. Best of all, the model remains flexible enough to make it
easy to extend and customize the information published on your project web site.

However, it is important that your project information not remain passive. Most Maven plugins allow
you to integrate rules into the build that check certain constraints on that piece of information once it
is well understood. The purpose, then, of the visual display is to aid in deriving the appropriate
constraints to use.

How well this works in your own projects will depend on the development culture of your team. It is
important that developers are involved in the decision making process regarding build constraints, so
that they feel that they are achievable. In some cases, it requires a shift from a focus on time and
deadlines, to a focus on quality. Once established, this focus and automated monitoring will have the
natural effect of improving productivity and reducing time of delivery again.

The additions and changes to Proficio made in this chapter can be found in the Code_Ch06-1.zip
source archive, and will be used as the basis for the next chapter.

The next chapter examines team development and collaboration, and incorporates the concepts
learned in this chapter, along with techniques to ensure that the build checks are now automated,
regularly scheduled, and run in the appropriate environment.

209

Better Builds with Maven

This page left intentionally blank.

210

7. Team Collaboration with Maven

Team Collaboration with Maven
This chapter covers:

• How Maven helps teams
• How to set up consistent developer environments
• How to set up a shared internal Maven repository
• Continuous Integration
• Creating shared organization metadata and archetypes
• Releasing a project

Collaboration on a book is the ultimate
unnatural act.

- Tom Clancy

211

Better Builds with Maven

7.1. The Issues Facing Teams
Software development as part of a team, whether it is 2 people or 200 people, faces a number of
challenges to the success of the effort. Many of these challenges are out of any given technology's
control – for instance finding the right people for the team, and dealing with differences in opinions.

However, one of the biggest challenges relates to the sharing and management of development
information. While it's essential that team members receive all of the project information required to
be productive, it's just as important that they don't waste valuable time researching and reading
through too many information sources simply to find what they need.

This problem gets exponentially larger as the size of the team increases. As each member retains
project information that isn't shared or commonly accessible, every other member (and particularly
new members), will inevitably have to spend time obtaining this localized information, repeating errors
previously solved or duplicating efforts already made. Even when it is not localized, project
information can still be misplaced, misinterpreted, or forgotten, further contributing to the problem.

As teams continue to grow, it is obvious that trying to publish and disseminate all of the available
information about a project would create a near impossible learning curve and generate a barrier to
productivity.

This problem is particularly relevant to those working as part of a team that is distributed across
different physical locations and timezones. However, although a distributed team has a higher
communication overhead than a team working in a single location, the key to the information issue in
both situations is to reduce the amount of communication necessary to obtain the required information
in the first place.

A Community-oriented Real-time Engineering (CoRE) process excels with this information challenge.
CoRE is based on accumulated learnings from open source projects that have achieved successful,
rapid development, working on complex, component-based projects despite large, widely-distributed
teams. Using the model of a community, CoRE emphasizes the relationship between project
information and project members.

An organizational and technology-based framework, CoRE enables globally distributed development
teams to cohesively contribute to high-quality software, in rapid, iterative cycles. This value is
delivered to development teams by supporting project transparency, real-time stakeholder
participation, and asynchronous engineering, which is enabled by the accessibility of consistently
structured and organized information such as centralized code repositories, web-based
communication channels and web-based project management tools.

Even though teams may be widely distributed, the fact that everyone has direct access to the other
team members through the CoRE framework reduces the time required to not only share information,
but also to incorporate feedback, resulting in shortened development cycles. The CoRE approach to
development also means that new team members are able to become productive quickly, and that
existing team members become more productive and effective.

While Maven is not tied directly to the CoRE framework, it does encompass a set of practices and
tools that enable effective team communication and collaboration. These tools aid the team to
organize, visualize, and document for reuse the artifacts that result from a software project.

212

Team Collaboration with Maven

As described in Chapter 6, Maven can gather and share the knowledge about the health of a project.
In this chapter, this is taken a step further, demonstrating how Maven provides teams with real-time
information on the builds and health of a project, through the practice of continuous integration.

This chapter also looks at the adoption and use of a consistent development environment, and the
use of archetypes to ensure consistency in the creation of new projects.

7.2. How to Set up a Consistent Developer Environment
Consistency is important when establishing a shared development environment. Without it, the set up
process for a new developer can be slow, error-prone and full of omissions. Additionally, because the
environment will tend to evolve inconsistently once started that way, it will be the source of time-
consuming development problems in the future.

While one of Maven's objectives is to provide suitable conventions to reduce the introduction of
inconsistencies in the build environment, there are unavoidable variables that remain, such as
different installation locations for software, multiple JDK versions, varying operating systems, and
other discrete settings such as user names and passwords.

To maintain build consistency, while still allowing for this natural variability, the key is to minimize the
configuration required by each individual developer, and to effectively define and declare them. In
Maven, these variables relate to the user and installation settings files, and to user-specific profiles.

In Chapter 2, you learned how to create your own settings.xml file. This file can be stored in the
conf directory of your Maven installation, or in the .m2 subdirectory of your home directory (settings
in this location take precedence over those in the Maven installation directory). The settings.xml
file contains a number of settings that are user-specific, but also several that are typically common
across users in a shared environment, such as proxy settings.

In a shared development environment, it's a good idea to leverage Maven's two different settings files
to separately manage shared and user-specific settings. Common configuration settings are included
in the installation directory, while an individual developer's settings are stored in their home directory.

213

Better Builds with Maven

The following is an example configuration file that you might use in the installation directory,
<user_home>/.m2/settings.xml:

<settings>
 <proxies>
 <proxy>
 <active>true</active>
 <protocol>http</protocol>
 <host>proxy</host>
 <port>8080</port>
 </proxy>
 </proxies>
 <servers>
 <server>
 <id>website</id>
 <username>${website.username}</username>
 <filePermissions>664</filePermissions>
 <directoryPermissions>775</directoryPermissions>
 </server>
 </servers>
 <profiles>
 <profile>
 <id>default-repositories</id>
 <repositories>
 <repository>
 <id>internal</id>
 <name>Internal Repository</name>
 <url>http://repo.mycompany.com/internal/</url>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>internal</id>
 <name>Internal Plugin Repository</name>
 <url>http://repo.mycompany.com/internal/</url>
 </pluginRepository>
 </pluginRepositories>
 </profile>
 </profiles>
 <activeProfiles>
 <activeProfile>property-overrides</activeProfile>
 <activeProfile>default-repositories</activeProfile>
 </activeProfiles>
 <pluginGroups>
 <pluginGroup>com.mycompany.plugins</pluginGroup>
 </pluginGroups>
</settings>

214

Team Collaboration with Maven

There are a number of reasons to include these settings in a shared configuration:

• If a proxy server is allowed, it would usually be set consistently across the organization or
department.

• The server settings will typically be common among a set of developers, with only specific
properties such as the user name defined in the user's settings. By placing the common
configuration in the shared settings, issues with inconsistently-defined identifiers and
permissions are avoided.

• The mirror element can be used to specify a mirror of a repository that is closer to you, which is
typically one that has been set up within your own organization or department. See section 7.3
of this chapter for more information on creating a mirror of the central repository within your own
organization.

• The profile defines those common, internal repositories that contain a given organization's or
department's released artifacts. These repositories are independent of the central repository in
this configuration. See section 7.3 for more information on setting up an internal repository.

• The active profiles listed enable the profile defined previously in every environment. Another
profile, property-overrides is also enabled by default. This profile will be defined in the user's
settings file to set the properties used in the shared file, such as ${website.username}.

• The plugin groups are necessary only if an organization has plugins, which are run from the
command line and not defined in the POM.

You'll notice that the local repository is omitted in the prior example. While you may define a standard
location that differs from Maven's default (for example, ${user.home}/maven-repo), it is
important that you do not configure this setting in a way that shares a local repository, at a single
physical location, across users. In Maven, the local repository is defined as the repository of a single
user.

The previous example forms a basic template that is a good starting point for the settings file in the
Maven installation. Using the basic template, you can easily add and consistently roll out any new
server and repository settings, without having to worry about integrating local changes made by
individual developers. The user-specific configuration is also much simpler as shown below:

<settings>
 <profiles>
 <profile>
 <id>property-overrides</id>
 <properties>
 <website.username>myuser</website.username>
 </properties>
 </profile>
 </profiles>
</settings>

To confirm that the settings are installed correctly, you can view the merged result by using the
following help plugin command:

C:\mvnbook> mvn help:effective-settings

215

Better Builds with Maven

Separating the shared settings from the user-specific settings is helpful, but it is also important to
ensure that the shared settings are easily and reliably installed with Maven, and when possible, easily
updated. The following are a few methods to achieve this:

• Rebuild the Maven release distribution to include the shared configuration file and distribute it
internally. A new release will be required each time the configuration is changed.

• Place the Maven installation on a read-only shared or network drive from which each
developer runs the application. If this infrastructure is available, each execution will
immediately be up-to-date. However, doing so will prevent Maven from being available off-line,
or if there are network problems.

• Check the Maven installation into CVS, Subversion, or other source control management
(SCM) system. Each developer can check out the installation into their own machines and run
it from there. Retrieving an update from an SCM will easily update the configuration and/or
installation, but requires a manual procedure.

• Use an existing desktop management solution, or other custom solution.

If necessary, it is possible to maintain multiple Maven installations, by one of the following methods:

• Using the M2_HOME environment variable to force the use of a particular installation.
• Adjusting the path or creating symbolic links (or shortcuts) to the desired Maven executable,

if M2_HOME is not set.

Configuring the settings.xml file covers the majority of use cases for individual developer
customization, however it applies to all projects that are built in the developer's environment. In some
circumstances however, an individual will need to customize the build of an individual project. To do
this, developers must use profiles in the profiles.xml file, located in the project directory. For more
information on profiles, see Chapter 3.

Now that each individual developer on the team has a consistent set up that can be customized as
needed, the next step is to establish a repository to and from which artifacts can be published and
dependencies downloaded, so that multiple developers and teams can collaborate effectively.

7.3. Creating a Shared Repository
Most organizations will need to set up one or more shared repositories, since not everyone can deploy
to the central Maven repository. To publish releases for use across different environments within their
network, organization's will typically want to set up what is referred to as an internal repository. This
internal repository is still treated as a remote repository in Maven, just as any other external repository
would be. For an explanation of the different types of repositories, see Chapter 2.

Setting up an internal repository is simple. While any of the available transport protocols can be used,
the most popular is HTTP. You can use an existing HTTP server for this, or create a new server using
Apache HTTPd, Apache Tomcat, Jetty, or any number of other servers.

To set up your organization's internal repository using Jetty, create a new directory in which to store
the files. While it can be stored anywhere you have permissions, in this example
C:\mvnbook\repository will be used. To set up Jetty, download the Jetty 5.1.10 server bundle
from the book's Web site and copy it to the repository directory. Change to that directory, and run:

C:\mvnbook\repository> java -jar jetty-5.1.10-bundle.jar 8081

216

Team Collaboration with Maven

You can now navigate to http://localhost:8081/ and find that there is a Web server running
displaying that directory. Your repository is now set up.

The server is set up on your own workstation for simplicity in this example. However, you will want to
set up or use an existing HTTP server that is in a shared, accessible location, configured securely and
monitored to ensure it remains running at all times.

This chapter will assume the repositories are running from http://localhost:8081/ and that
artifacts are deployed to the repositories using the file system. However, it is possible to use a
repository on another server with any combination of supported protocols including http, ftp,
scp, sftp and more. For more information, refer to Chapter 3.

Later in this chapter you will learn that there are good reasons to run multiple, separate repositories,
but rather than set up multiple Web servers, you can store the repositories on this single server. For
the first repository, create a subdirectory called internal that will be available at
http://localhost:8081/internal/.

This creates an empty repository, and is all that is needed to get started.

C:\mvnbook\repository> mkdir internal

It is also possible to set up another repository (or use the same one) to mirror content from the Maven
central repository. While this isn't required, it is common in many organizations as it eliminates the
requirement for Internet access or proxy configuration. In addition, it provides faster performance (as
most downloads to individual developers come from within their own network), and gives full control
over the set of artifacts with which your software is built, by avoiding any reliance on Maven's
relatively open central repository.

You can create a separate repository under the same server, using the following command:

C:\mvnbook\repository> mkdir central

This repository will be available at http://localhost:8081/central/.

To populate the repository you just created, there are a number of methods available:

• Manually add content as desired using mvn deploy:deploy-file.

• Set up the Maven Repository Manager as a proxy to the central repository. This will
download anything that is not already present, and keep a copy in your internal repository
for others on your team to reuse.

• Use rsync to take a copy of the central repository and regularly update it. At the time of
writing, the size of the Maven repository was 5.8G.

The Maven Repository Manager (MRM) is a new addition to the Maven build platform that is designed
to administer your internal repository. It is deployed to your Jetty server (or any other servlet
container) and provides remote repository proxies, as well as friendly repository browsing, searching,
and reporting. The repository manager can be downloaded from http://maven.apache.org/repository-
manager/.

217

http://maven.apache.org/repository-manager/
http://maven.apache.org/repository-manager/

Better Builds with Maven

When using this repository for your projects, there are two choices: use it as a mirror, or have it
override the central repository. You would use it as a mirror if it is intended to be a copy of the central
repository exclusively, and if it's acceptable to have developers configure this in their settings as
demonstrated in section 7.2. Developers may choose to use a different mirror, or the original central
repository directly without consequence to the outcome of the build.

On the other hand, if you want to prevent access to the central repository for greater control, to
configure the repository from the project level instead of in each user's settings (with one exception
that will be discussed next), or to include your own artifacts in the same repository, you should
override the central repository.

To override the central repository with your internal repository, you must define a repository in a
settings file and/or POM that uses the identifier central. Usually, this must be defined as both a
regular repository and a plugin repository to ensure all access is consistent. For example:

<repositories>
 <repository>
 <id>central</id>
 <name>Internal Mirror of Central Repository</name>
 <url>http://localhost:8081/central/</url>
 </repository>
</repositories>
<pluginRepositories>
 <pluginRepository>
 <id>central</id>
 <name>Internal Mirror of Central Plugins Repository</name>
 <url>http://localhost:8081/central/</url>
 </pluginRepository>
</pluginRepositories>

You should not enter this into your project now, unless you have mirrored the central
repository using one of the techniques discussed previously, otherwise Maven will fail to
download any dependencies that are not in your local repository.

Repositories such as the one above are configured in the POM usually, so that a project can add
repositories itself for dependencies located out of those repositories configured initially. However,
there is a problem – when a POM inherits from another POM that is not in the central repository, it
must retrieve the parent from the repository. This makes it impossible to define the repository in the
parent, and as a result, it would need to be declared in every POM. Not only is this very inconvenient,
it would be a nightmare to change should the repository location change!

The solution is to declare your internal repository (or central replacement) in the shared
settings.xml file, as shown in section 7.2. If you have multiple repositories, it is necessary to
declare only those that contain an inherited POM.

It is still important to declare the repositories that will be used in the top-most POM itself, for a
situation where a developer might not have configured their settings and instead manually installed
the POM, or had it in their source code check out.

The next section discusses how to set up an “organization POM”, or hierarchy, that declares shared
settings within an organization and its departments.

218

Team Collaboration with Maven

7.4. Creating an Organization POM
As previously mentioned in this chapter, consistency is important when setting up your build
infrastructure. By declaring shared elements in a common parent POM, project inheritance can be
used to assist in ensuring project consistency.

While project inheritance was limited by the extent of a developer's checkout in Maven 1.0 – that is,
the current project – Maven 2 now retrieves parent projects from the repository, so it's possible to
have one or more parents that define elements common to several projects. These parents (levels)
may be used to define departments, or the organization as a whole.

As an example, consider the Maven project itself. It is a part of the Apache Software Foundation, and
is a project that, itself, has a number of sub-projects (Maven, Maven SCM, Maven Continuum, etc.).
As a result, there are three levels to consider when working with any individual module that makes up
the Maven project. This project structure can be related to a company structure, wherein there's the
organization, its departments, and then the teams within those departments. Any number of levels
(parents) can be used, depending on the information that needs to be shared.

To continue the Maven example, consider the POM for Maven SCM:

<project>
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.apache.maven</groupId>
 <artifactId>maven-parent</artifactId>
 <version>1</version>
 </parent>
 <groupId>org.apache.maven.scm</groupId>
 <artifactId>maven-scm</artifactId>
 <url>http://maven.apache.org/maven-scm/</url>
 [...]
 <modules>
 <module>maven-scm-api</module>
 <module>maven-scm-providers</module>
 [...]
 </modules>
</project>

If you were to review the entire POM, you'd find that there is very little deployment or repository-
related information, as this is consistent information, which is shared across all Maven projects
through inheritance.

You may have noticed the unusual version declaration for the parent project. Since the version of the
POM usually bears no resemblance to the software, the easiest way to version a POM is through
sequential numbering. Future versions of Maven plan to automate the numbering of these types of
parent projects to make this easier.

It is important to recall, from section 7.3, that if your inherited projects reside in an internal
repository, then that repository will need to be added to the settings.xml file in the shared
installation (or in each developer's home directory).

219

Better Builds with Maven

If you look at the Maven project's parent POM, you'd see it looks like the following:

<project>
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.apache</groupId>
 <artifactId>apache</artifactId>
 <version>1</version>
 </parent>
 <groupId>org.apache.maven</groupId>
 <artifactId>maven-parent</artifactId>
 <version>5</version>
 <url>http://maven.apache.org/</url>
 [...]
 <mailingLists>
 <mailingList>
 <name>Maven Announcements List</name>
 <post>announce@maven.apache.org</post>
 [...]
 </mailingList>
 </mailingLists>
 <developers>
 <developer>
 [...]
 </developer>
 </developers>
</project>

220

Team Collaboration with Maven

The Maven parent POM includes shared elements, such as the announcements mailing list and the
list of developers that work across the whole project. Again, most of the elements are inherited from
the organization-wide parent project, in this case the Apache Software Foundation:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.apache</groupId>
 <artifactId>apache</artifactId>
 <version>1</version>
 <organization>
 <name>Apache Software Foundation</name>
 <url>http://www.apache.org/</url>
 </organization>
 <url>http://www.apache.org/</url>
 [...]
 <repositories>
 <repository>
 <id>apache.snapshots</id>
 <name>Apache Snapshot Repository</name>
 <url>http://svn.apache.org/maven-snapshot-repository</url>
 <releases>
 <enabled>false</enabled>
 </releases>
 </repository>
 </repositories>
 [...]
 <distributionManagement>
 <repository>
 [...]
 </repository>
 <snapshotRepository>
 [...]
 </snapshotRepository>
 </distributionManagement>
</project>

The Maven project declares the elements that are common to all of its sub-projects – the snapshot
repository (which will be discussed further in section 7.6), and the deployment locations.

An issue that can arise, when working with this type of hierarchy, is regarding the storage location of
the source POM files. Source control management systems like CVS and SVN (with the traditional
intervening trunk directory at the individual project level) do not make it easy to store and check out
such a structure.

These parent POM files are likely to be updated on a different, and less frequent schedule than the
projects themselves. For this reason, it is best to store the parent POM files in a separate area of the
source control tree, where they can be checked out, modified, and deployed with their new version as
appropriate. In fact, there is no best practice requirement to even store these files in your source
control management system; you can retain the historical versions in the repository if it is backed up
(in the future, the Maestro Repository Manager will allow POM updates from a Web interface).

221

Better Builds with Maven

7.5. Continuous Integration with Continuum
If you are not already familiar with it, continuous integration enables automated builds of your project
on a regular interval, ensuring that conflicts are detected earlier in a project's release life cycle, rather
than close to a release. More than just nightly builds, continuous integration can enable a better
development culture where team members can make smaller, iterative changes that can more easily
support concurrent development processes. As such, continuous integration is a key element of
effective collaboration.

Continuum9 is Maven's continuous integration and build server. In this chapter, you will pick up the
Proficio example from earlier in the book, and learn how to use Continuum to build this project on a
regular basis. The examples discussed are based on Continuum 1.0.3, however newer versions
should be similar. The examples also assumes you have Subversion installed, which you can obtain
for your operating system from http://subversion.tigris.org/.

First, you will need to install Continuum. This is very simple – once you have downloaded it and
unpacked it, you can run it using the following command:

C:\mvnbook\continuum-1.0.3> bin\win32\run

There are scripts for most major platforms, as well as the generic bin/plexus.sh for use on other
Unix-based platforms. Starting up Continuum will also start a http server and servlet engine.

You can verify the installation by viewing the web site at http://localhost:8080/continuum/.

The first screen to appear will be the one-time setup page shown in figure 7-1. The configuration on
the screen is straight forward – all you should need to enter are the details of the administration
account you'd like to use, and the company information for altering the logo in the top left of the
screen.

For most installations this is all the configuration that's required, however, if you are running
Continuum on your desktop and want to try the examples in this section, some additional steps are
required. As of Continuum 1.0.3, these additional configuration requirements can be set only after the
previous step has been completed, and you must stop the server to make the changes (to stop the
server, press Ctrl-C in the window that is running Continuum).

9 Alternatively, continuous integration can be done from the DevZuz Maestro Project Server. Maestro is an
Apache License 2.0 distribution based on a pre-integrated Maven, Continuum and Archiva build platform.
For more information on Maestro please see: http://www.devzuz.com/.

222

http://localhost:8080/continuum/
http://subversion.tigris.org/
http://www.devzuz.com/

Team Collaboration with Maven

Figure 7-1: The Continuum setup screen

To complete the Continuum setup page, you can cut and paste field values from the following list:
Field Name Value

Working Directory working-directory
Build Output Directory build-output-directory
Base URL http://localhost:8080/continuum/servlet/continuum

223

Better Builds with Maven

In the following examples, POM files will be read from the local hard disk where the server is running.
By default, this is disabled as a security measure, since paths can be entered from the web interface. To
enable this setting, edit apps/continuum/conf/application.xml and verify the following line
isn't commented out:

[...]
<implementation>
 org.codehaus.plexus.formica.validation.UrlValidator
</implementation>
<configuration>
 <allowedSchemes>
 [...]
 <allowedScheme>file</allowedScheme>
 </allowedSchemes>
</configuration>
[...]

To have Continuum send you e-mail notifications, you will also need an SMTP server to which to send
the messages. The default is to use localhost:25. If you do not have this set up on your machine,
edit the file above to change the smtp-host setting. For instructions, refer to
http://maven.apache.org/continuum/guides/mini/guide-configuration.html.

After these steps are completed, you can start Continuum again.
The next step is to set up the Subversion repository for the examples. This requires obtaining the
Code_Ch07.zip archive and unpacking it in your environment. You can then check out Proficio from
that location, for example if it was unzipped in C:\mvnbook\svn, execute the following:

C:\mvnbook\proficio> svn co \
file://localhost/C:/mvnbook/svn/proficio/trunk

The command above works if the code is unpacked in C:\mvnbook\svn. If the code is
unpacked in a different location, the file URL in the command should be similar to the
following:

file://localhost/[path_to_svn_code]/proficio/trunk.

224

file:///../mvnbook
file:///../mvnbook
file:///../mvnbook/svn/proficio/trunk
file:///../mvnbook/svn/proficio/trunk
file:///../mvnbook/svn/proficio/trunk
http://maven.apache.org/continuum/guides/mini/guide-configuration.html

Team Collaboration with Maven

The POM in this repository is not completely configured yet, since not all of the required
details were known at the time of its creation. Edit proficio/trunk/pom.xml to
correct the e-mail address to which notifications will be sent, and edit the location of the
Subversion repository, by uncommenting and modifying the following lines:

[...]
<ciManagement>
 <system>continuum</system>
 <url>http://localhost:8080/continuum
 <notifiers>
 <notifier>
 <type>mail</type>
 <configuration>
 <address>youremail@yourdomain.com</address>
 </configuration>
 </notifier>
 </notifiers>
</ciManagement>
[...]
<scm>
 <connection>
 scm:svn:file://localhost/C:/mvnbook/svn/proficio/trunk
 </connection>
 <developerConnection>
 scm:svn:file://localhost/C:/mvnbook/svn/proficio/trunk
 </developerConnection>
</scm>
[...]
<distributionManagement>
 <site>
 <id>website</id>
 <url>
 file://localhost/C:/mvnbook/repository/sites/proficio
 /reference/${project.version}
 </url>
 </site>
</distributionManagement>
[...]

The ciManagement section is where the project's continuous integration is defined and in the above
example has been configured to use Continuum locally on port 8080.

The distributionManagement setting will be used in a later example to deploy the site from your
continuous integration environment. This assumes that you are still running the repository Web server
on localhost:8081, from the directory C:\mvnbook\repository. If you haven't done so
already, refer to section 7.3 for information on how to set this up.

Once these settings have been edited to reflect your setup, commit the file with the following
command:

C:\mvnbook\proficio\trunk> svn ci -m "my settings" pom.xml

225

Better Builds with Maven

You should build all these modules to ensure everything is in order, with the following command:

C:\mvnbook\proficio\trunk> mvn install

You are now ready to start using Continuum.

If you return to the http://localhost:8080/continuum/ location that was set up previously,
you will see an empty project list. Before you can add a project to the list, or perform other tasks, you
must either log in with the administrator account you created during installation, or with another
account you have since created with appropriate permissions. The login link is at the top-left of the
screen, under the Continuum logo.

Once you have logged in, you can now select Maven 2.0+ Project from the Add Project menu. This
will present the screen shown in figure 7-2. You have two options: you can provide the URL for a
POM, or upload from your local drive. While uploading is a convenient way to configure from your
existing check out, in Continuum 1.0.3 this does not work when the POM contains modules, as in the
Proficio example. Instead, enter the file:/// URL as shown. When you set up your own system
later, you will enter either a HTTP URL to a POM in the repository, a ViewCVS installation, or a
Subversion HTTP server.

Figure 7-2: Add project screen shot

This is all that is required to add a Maven 2 project to Continuum. After submitting the URL,
Continuum will return to the project summary page, and each of the modules will be added to the list
of projects. Initially, the builds will be marked as New and their checkouts will be queued. The result is
shown in figure 7-3.

226

Team Collaboration with Maven

Figure 7-3: Summary page after projects have built

Continuum will now build the project hourly, and send an e-mail notification if there are any problems.
If you want to put this to the test, go to your earlier checkout and introduce an error into
Proficio.java, for example, remove the interface keyword:

[...]
public Proficio
[...]

Now, check the file in:

C:\mvnbook\proficio\trunk\proficio-api> svn ci -m "introduce error" \
src/main/java/com/devzuz/mvnbook/proficio/Proficio.java

Finally, press Build Now on the Continuum Web interface next to the Proficio API module. First, the
build will show an “In progress” status, and then fail, marking the left column with an “!” to indicate a
failed build (you will need to refresh the page using the Show Projects link in the navigation to see
these changes). In addition, you should receive an e-mail at the address you configured earlier. The
Build History link can be used to identify the failed build and to obtain a full output log.

To avoid receiving this error every hour, restore the file above to its previous state and commit it
again. The build in Continuum will return to the successful state.

This chapter will not discuss all of the features available in Continuum, but you may wish to go ahead
and try them. For example, you might want to set up a notification to your favorite instant messenger
– IRC, Jabber, MSN and Google Talk are all supported.

227

Better Builds with Maven

Regardless of which continuous integration server you use, there are a few tips for getting the most
out of the system:

• Commit early, commit often. Continuous integration is most effective when developers
commit regularly. This doesn’t mean committing incomplete code, but rather keeping
changes small and well tested. This will make it much easier to detect the source of an error
when the build does break.

• Run builds as often as possible. This will be constrained by the length of the build and the
available resources on the build machine, but it is best to detect a failure as soon as
possible, before the developer moves on or loses focus. Continuum can be configured to
trigger a build whenever a commit occurs, if the source control repository supports post-
commit hooks. This also means that builds should be fast – long integration and
performance tests should be reserved for periodic builds.

• Fix builds as soon as possible. While this seems obvious, it is often ignored. Continuous
integration will be pointless if developers repetitively ignore or delete broken build
notifications, and your team will become desensitized to the notifications in the future.

• Establish a stable environment. Avoid customizing the JDK, or local settings, if it isn't
something already in use in other development, test and production environments. When a
failure occurs in the continuous integration environment, it is important that it can be isolated
to the change that caused it, and independent of the environment being used.

• Run clean builds. While rapid, iterative builds are helpful in some situations, it is also
important that failures don't occur due to old build state. Consider a regular, clean build.
Continuum currently defaults to doing a clean build, and a future version will allow
developers to request a fresh checkout, based on selected schedules.

• Run comprehensive tests. Continuous integration is most beneficial when tests are
validating that the code is working as it always has, not just that the project still compiles
after one or more changes occur. In addition, it is beneficial to test against all different
versions of the JDK, operating system and other variables, periodically. Continuum has
preliminary support for system profiles and distributed testing, enhancements that are
planned for future versions.

• Build all of a project's active branches. If multiple branches are in development, the
continuous integration environment should be set up for all of the active branches.

• Run a copy of the application continuously. If the application is a web application, for
example, run a servlet container to which the application can be deployed from the
continuous integration environment. This can be helpful for non-developers who need
visibility into the state of the application, separate from QA and production releases.

In addition to the above best practices, there are two additional topics that deserve special attention:
automated updates to the developer web site, and profile usage.

In Chapter 6, you learned how to create an effective site containing project information and reports
about the project's health and vitality. For these reports to be of value, they need to be kept up-to-
date. This is another way continuous integration can help with project collaboration and
communication. Though it would be overkill to regenerate the site on every commit, it is recommend
that a separate, but regular schedule is established for site generation.

228

Team Collaboration with Maven

Verify that you are still logged into your Continuum instance. Next, from the Administration menu on
the left-hand side, select Schedules. You will see that currently, only the default schedule is available.
Click the Add button to add a new schedule, which will be configured to run every hour during
business hours (8am – 4pm weekdays).

The appropriate configuration is shown in figure 7-4.

Figure 7-4: Schedule configuration

To complete the schedule configuration, you can cut and paste field values from the following list:
Field Name Value
Name Site Generation
Description Redeploy the site to the development project site

during business hours
Cron Expression 0 0 8-16 ? * MON-FRI
Quiet Period (seconds) 0

The cron expression entered here is much like the one entered for a Unix crontab and is further
described at http://www.opensymphony.com/quartz/api/org/quartz/CronTrigger.html. The example
above runs at 8:00:00, 9:00:00,..., 16:00:00 from Monday to Friday.

The “quiet period” is a setting that delays the build if there has been a commit in the defined number
of seconds prior. This is useful when using CVS, since commits are not atomic and a developer might
be committing midway through a update. It is not typically needed if using Subversion.

229

http://www.opensymphony.com/quartz/api/org/quartz/CronTrigger.html

Better Builds with Maven

Once you add this schedule, return to the project list, and select the top-most project, Maven Proficio.
The project information shows just one build on the default schedule that installs the parent POM, but
does not recurse into the modules (the -N or --non-recursive argument). Since this is the
root of the multi-module build – and it will also detect changes to any of the modules – this is the best
place from which to build the site. In addition to building the sites for each module, it can aggregate
changes into the top-level site as required.

The downside to this approach is that Continuum will build any unchanged modules, as well – if this is
a concern, use the non-recursive mode instead, and add the same build definition to all of the
modules.

In Continuum 1.0.3, there is no way to make bulk changes to build definitions, so you will
need to add the definition to each module individually.

In this example you will add a new build definition to run the site deployment for the entirety of the
multi-module build, on the business hours schedule. To add a new build definition, click the Add
button below the default build definition. The Add Build Definition screen is shown in figure 7-5.

Figure 7-5: Adding a build definition for site deployment

To complete the Add Build Definition screen, you can cut and paste field values from the following list:
Field Name Value
POM filename pom.xml
Goals clean site-deploy
Arguments --batch-mode -DenableCiProfile=true

230

Team Collaboration with Maven

The goals to run are clean and site-deploy. The site will be deployed to the file system location you
specified in the POM, when you first set up the Subversion repository earlier in this chapter, which will
be visible from http://localhost:8081/sites/proficio/.

The arguments provided are --batch-mode, which is essential for all builds to ensure they don't
block for user input, and -DenableCiProfile=true, which sets the given system property. The
meaning of this system property will be explained shortly. The --non-recursive option is omitted.

You can see also that the schedule is set to use the site generation schedule created earlier, and that
it is not the default build definition, which means that Build Now from the project summary page will
not trigger this build. However, each build definition on the project information page (to which you
would have been returned after adding the build definition) has a Build Now icon. Click this for the site
generation build definition, and view the generated site from
http://localhost:8081/sites/proficio/.

It is rare that the site build will fail, since most reports continue under failure conditions. However, if
you want to fail the build based on these checks as well, you can add the test, verify or integration-
test goal to the list of goals, to ensure these checks are run.

Any of these test goals should be listed after the site-deploy goal, so that if the build fails
because of a failed check, the generated site can be used as reference for what caused the
failure.

In the previous example, a system property called enableCiProfile was set to true. In Chapter 6,
a number of plugins were set up to fail the build if certain project health checks failed, such as the
percentage of code covered in the unit tests dropping below a certain value. However, these checks
delayed the build for all developers, which can be a discouragement to using them.

If you compare the example proficio/trunk/pom.xml file in your Subversion checkout to that
used in Chapter 6, you'll see that these checks have now been moved to a profile. Profiles are a
means for selectively enabling portions of the build. If you haven't previously encountered profiles,
please refer to Chapter 3. In this particular case, the profile is enabled only when the
enableCiProfile system property is set to true.

[...]
<profiles>
 <profile>
 <id>ciProfile</id>
 <activation>
 <property>
 <name>enableCiProfile</name>
 <value>true</value>
 </property>
 </activation>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-pmd-plugin</artifactId>
 <executions>
[...]

231

Better Builds with Maven

You'll find that when you run the build from the command line (as was done in Continuum originally),
none of the checks added in the previous chapter are executed. The checks will be run when you
enable the ciProfile using mvn -DenableCiProfile=true.

There are two ways to ensure that all of the builds added in Continuum use this profile. The first is to
adjust the default build definition for each module, by going to the module information page, and
clicking Edit next to the default build definition. As you saw before, it is necessary to do this for each
module individually, at least in the version of Continuum current at the time of writing.

The other alternative is to set this profile globally, for all projects in Continuum. As Maven 2 is still
executed as normal, it reads the ${user.home}/.m2/settings.xml file for the user under which
it is running, as well as the settings in the Maven installation. To enable this profile by default from
these settings, add the following configuration to the settings.xml file in
<user_home>/.m2/settings.xml:

[...]
<activeProfiles>
 [...]
 <activeProfile>ciProfile</activeProfile>
</activeProfiles>
[...]

In this case the identifier of the profile itself, rather than the property used to enable it, indicates that
the profile is always active when these settings are read.

How you configure your continuous integration depends on the culture of your development team and
other environmental factors such as the size of your projects and the time it takes to build and test
them. The guidelines discussed in this chapter will help point your team in the right direction, but the
timing and configuration can be changed depending upon your circumstances. For example, if the
additional checks take too much time for frequent continuous integration builds, it may be necessary
to schedule them separately for each module, or for the entire multi-module project to run the
additional checks after the site has been generated, the verify goal may need to be added to the site
deployment build definition, as discussed previously.

7.6. Team Dependency Management Using Snapshots
Chapter 3 of this book discussed how to manage your dependencies in a multi-module build, and
while dependency management is fundamental to any Maven build, the team dynamic makes it
critical.

In this section, you will learn about using snapshots more effectively in a team environment, and how
to enable this within your continuous integration environment.

So far in this book, snapshots have been used to refer to the development version of an individual
module. The generated artifacts of the snapshot are stored in the local repository, and in contrast to
regular dependencies, which are not changed, these artifacts will be updated frequently. Projects in
Maven stay in the snapshot state until they are released, which is discussed in section 7.8 of this
chapter.

232

Team Collaboration with Maven

Snapshots were designed to be used in a team environment as a means for sharing development
versions of artifacts that have already been built. Usually, in an environment where a number of
modules are undergoing concurrent development, the build involves checking out all of the dependent
projects and building them yourself. Additionally, in some cases, where projects are closely related,
you must build all of the modules simultaneously from a master build.

While building all of the modules from source can work well and is handled by Maven inherently, it can
lead to a number of problems:

• It relies on manual updates from developers, which can be error-prone. This will result in local
inconsistencies that can produce non-working builds

• There is no common baseline against which to measure progress
• Building can be slower as multiple dependencies must be rebuilt also
• Changes developed against outdated code can make integration more difficult

As you can see from these issues, building from source doesn't fit well with an environment that promotes
continuous integration. Instead, use binary snapshots that have been already built and tested.

In Maven, this is achieved by regularly deploying snapshots to a shared repository, such as the
internal repository set up in section 7.3. Considering that example, you'll see that the repository was
defined in proficio/trunk/pom.xml:

[...]
<distributionManagement>
 <repository>
 <id>internal</id>
 <url>file://localhost/C:/mvnbook/repository/internal</url>
 </repository>
 [...]
</distributionManagement>

Now, deploy proficio-api to the repository with the following command:

C:\mvnbook\proficio\trunk\proficio-api> mvn deploy
You'll see that it is treated differently than when it was installed in the local repository. The filename
that is used is similar to proficio-api-1.0-20070726.120139-1.jar. In this case, the
version used is the time that it was deployed (in the UTC timezone) and the build number. If you were
to deploy again, the time stamp would change and the build number would increment to 2.

This technique allows you to continue using the latest version by declaring a dependency on 1.0-
SNAPSHOT, or to lock down a stable version by declaring the dependency version to be the specific
equivalent such as 1.0-20070726.12013-1. While this is not usually the case, locking the version
in this way may be important if there are recent changes to the repository that need to be ignored
temporarily.

Currently, the Proficio project itself is not looking in the internal repository for dependencies, but rather
relying on the other modules to be built first, though it may have been configured as part of your
settings files. To add the internal repository to the list of repositories used by Proficio regardless of
settings, add the following to proficio/trunk/pom.xml:

233

Better Builds with Maven

[...]
<repositories>
 <repository>
 <id>internal</id>
 <url>http://localhost:8081/internal</url>
 </repository>
</repositories>
[...]

If you are developing plugins, you may also want to add this as a pluginRepository
element as well.

Now, to see the updated version downloaded, build proficio-core with the following command:

C:\mvnbook\proficio\trunk\proficio-core> mvn -U install

During the build, you will see that some of the dependencies are checked for updates, similar to the
example below (note that this output has been abbreviated):

[...]
proficio-api:1.0-SNAPSHOT: checking for updates from internal
[...]

The -U argument in the prior command is required to force Maven to update all of the snapshots in
the build. If it were omitted, by default, no update would be performed. This is because the default
policy is to update snapshots daily – that is, to check for an update the first time that particular
dependency is used after midnight local time.

You can always force the update using the -U command, but you can also change the interval by
changing the repository configuration. To see this, add the following configuration to the repository
configuration you defined above in proficio/trunk/pom.xml:

[...]
<repository>
 [...]
 <snapshots>
 <updatePolicy>interval:60</updatePolicy>
 </snapshots>
</repository>
[...]

In this example, any snapshot dependencies will be checked once an hour to determine if there are
updates in the remote repository. The settings that can be used for the update policy are never,
always, daily (the default), and interval:minutes.

Whenever you use the -U argument, it updates both releases and snapshots. This causes
many plugins to be checked for updates, as well as updating any version ranges.

234

Team Collaboration with Maven

This technique can ensure that developers get regular updates, without having to manually intervene,
and without slowing down the build by checking on every access (as would be the case if the policy
were set to always). However, the updates will still occur only as frequently as new versions are
deployed to the repository.

It is possible to establish a policy where developers do an update from the source control
management (SCM) system before committing, and then deploy the snapshot to share with the other
team members. However, this introduces a risk that the snapshot will not be deployed at all, deployed
with uncommitted code, or deployed without all the updates from the SCM, making it out-of-date.
Several of the problems mentioned earlier still exist – so at this point, all that is being saved is some
time, assuming that the other developers have remembered to follow the process.

A much better way to use snapshots is to automate their creation. Since the continuous integration
server regularly rebuilds the code from a known state, it makes sense to have it build snapshots, as
well.

How you implement this will depend on the continuous integration server that you use. To deploy from
your server, you must ensure that the distributionManagement section of the POM is correctly
configured. However, as you saw earlier, Continuum can be configured to deploy its builds to a Maven
snapshot repository automatically. If there is a repository configured to which to deploy them, this
feature is enabled by default in a build definition. So far in this section, you have not been asked to
apply this setting, so let's go ahead and do it now. Log in as an administrator and go to the following
Configuration screen, shown in figure 7-6.

Figure 7-6: Continuum configuration

To complete the Continuum configuration page, you can cut and paste field values from the following list:
Field Name Value
Working Directory C:\mvnbook\continuum-1.0.3\bin\win32\..\..\apps\

continuum\working-directory
Build Output Directory C:\mvnbook\continuum-1.0.3\bin\win32\..\..\apps\

continuum\build-output-directory

235

Better Builds with Maven

Deployment
Repository Directory

C:\mvnbook\repository\internal

Base URL http://localhost:8080/continuum/servlet/continuum
Company Name DevZuz
Company Logo http://devzuz.com/html/themes/cnp/images/DevZuz-

logo.jpg
Company URL http://www.devzuz.com

The Deployment Repository Directory field entry relies on your internal repository and
Continuum server being in the same location. If this is not the case, you can enter a full
repository URL such as scp://repositoryhost/www/repository/internal.

To try this feature, follow the Show Projects link, and click Build Now on the Proficio API project. Once
the build completes, return to your console and build proficio-core again using the following
command:

C:\mvnbook\proficio\trunk\proficio-core> mvn -U install

You'll notice that a new version of proficio-api is downloaded, with an updated time stamp and
build number.

With this setup, you can avoid all of the problems discussed previously. Better yet, while you get
regular updates from published binary dependencies, when necessary, you can either lock a
dependency to a particular build, or build from source.

Another point to note about snapshots is that it is possible to store them in a separate repository from
the rest of your released artifacts. This can be useful if you need to clean up snapshots on a regular
interval, but still keep a full archive of releases.

If you are using the regular deployment mechanism (instead of using Continuum), this separation is
achieved by adding an additional repository to the distributionManagement section of your
POM. For example, if you had a snapshot-only repository in /www/repository/snapshots, you
would add the following:

[...]
<distributionManagement>
 [...]
 <snapshotRepository>
 <id>internal.snapshots</id>
 <url>file://localhost/www/repository/snapshots</url>
 </snapshotRepository>
</distributionManagement>
[...]

This will deploy to that repository whenever the version contains SNAPSHOT, and deploy to the
regular repository you listed earlier, when it doesn't.

Given this configuration, you can make the snapshot update process more efficient by not checking
the repository that has only releases for updates. The replacement repository declarations in your
POM would look like this:

236

Team Collaboration with Maven

[...]
<repositories>
 <repository>
 <id>internal</id>
 <url>http://localhost:8081/internal</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 <repository>
 <id>internal.snapshots</id>
 <url>http://localhost:8081/snapshots</url>
 <snapshots>
 <updatePolicy>interval:60</updatePolicy>
 </snapshots>
 </repository>
</repositories>
[...]

7.7. Creating a Standard Project Archetype
Throughout this book, you have seen the archetypes that were introduced in Chapter 2 used to
quickly lay down a project structure. While this is convenient, there is always some additional
configuration required, either in adding or removing content from that generated by the archetypes.
To avoid this, you can create one or more of your own archetypes.

Beyond the convenience of laying out a project structure instantly, archetypes give you the
opportunity to start a project in the right way – that is, in a way that is consistent with other projects in
your environment. As you saw in this chapter, the requirement of achieving consistency is a key issue
facing teams.

Writing an archetype is quite like writing your own project, and replacing the specific values with
parameters. There are two ways to create an archetype: one based on an existing project using mvn
archetype:create-from-project, and the other, by hand, using an archetype. To get started
with the archetype, run the following command:

C:\mvnbook\proficio\trunk> mvn archetype:create \
-DgroupId=com.devzuz.mvnbook \
-DartifactId=proficio-archetype \
-DarchetypeArtifactId=maven-archetype-archetype

237

Better Builds with Maven

The layout of the resulting archetype is shown in figure 7-7.

Figure 7-7: Archetype directory layout

If you look at pom.xml at the top level, you'll see that the archetype is just a normal JAR project –
there is no special build configuration required. The JAR that is built is composed only of resources,
so everything else is contained under src/main/resources. There are two pieces of information
required: the archetype descriptor in META-INF/maven/archetype.xml, and the template project
in archetype-resources.

The archetype descriptor describes how to construct a new project from the archetype-resources
provided. The example descriptor looks like the following:

<archetype>
 <id>proficio-archetype</id>
 <sources>
 <source>src/main/java/App.java</source>
 </sources>
 <testSources>
 <source>src/test/java/AppTest.java</source>
 </testSources>
</archetype>

Each tag is a list of files to process and generate in the created project. The example above shows
the sources and test sources, but it is also possible to specify files for resources, testResources,
and siteResources.

238

Team Collaboration with Maven

The files within the archetype-resources section are Velocity templates. These files will be used
to generate the template files when the archetype is run. For this example, the pom.xml file looks like
the following:

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>$groupId</groupId>
 <artifactId>$artifactId</artifactId>
 <version>$version</version>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

As you can see, the groupId, artifactId and version elements are variables that will be
substituted with the values provided by the developer running archetype:create.

From here, you need to populate the template with the content that you'd like to have applied
consistently to new projects. For more information on creating an archetype, refer to the
documentation on the Maven Web site.

Once you have completed the content in the archetype, Maven will build, install and deploy it like any
other JAR. Continuing from the example in section 7.3 of this chapter, you will use the “internal”
repository. Since the archetype inherits the Proficio parent, it has the correct deployment settings
already, so you can run the following command:

C:\mvnbook\proficio\trunk\proficio-archetype> mvn deploy

The archetype is now ready to be used. To do so, go to an empty directory and run the following
command:

C:\mvnbook> mvn archetype:create -DgroupId=com.devzuz.mvnbook \
-DartifactId=proficio-example \
-DarchetypeGroupId=com.devzuz.mvnbook \
-DarchetypeArtifactId=proficio-archetype \
-DarchetypeVersion=1.0-SNAPSHOT

Normally, the archetypeVersion argument is not required at this point. However, since the
archetype has not yet been released, if omitted, the required version would not be known (or if this
was later development, a previous release would be used instead). Releasing a project is explained in
section 7.8 of this chapter.

You now have the template project laid out in the proficio-example directory. It will look very
similar to the content of the archetype-resources directory you created earlier, now however, the
content of the files will be populated with the values that you provided on the command line.

239

Better Builds with Maven

7.8. Cutting a Release
Releasing software is difficult. It is usually tedious and error prone, full of manual steps that need to
be completed in a particular order. Worse, it happens at the end of a long period of development
when all everyone on the team wants to do is get it out there, which often leads to omissions or short
cuts. Finally, once a release has been made, it is usually difficult or impossible to correct mistakes
other than to make another, new release.

Once the definition for a release has been set by a team, releases should be consistent every time
they are built, allowing them to be highly automated. Maven provides a release plugin that provides
the basic functions of a standard release process. The release plugin takes care of a number of
manual steps in updating the project POM, updating the source control management system to check
and commit release related changes, and creating tags (or equivalent for your SCM).10

The release plugin operates in two steps: prepare and perform. The prepare step is run once for a
release, and does all of the project and source control manipulation that results in a tagged version.
The perform step could potentially be run multiple times to rebuild a release from a clean checkout of
the tagged version, and to perform standard tasks, such as deployment to the remote repository.

To demonstrate how the release plugin works, the Proficio example will be revisited, and released as
1.0. You can continue using the code that you have been working on in the previous sections, or
check out the following:

C:\mvnbook\proficio> svn co \
file://localhost/C:/mvnbook/svn/proficio/tags/proficio-1.0

To start the release process, run the following command:

C:\mvnbook\proficio\trunk> mvn release:prepare -DdryRun=true

This simulates a normal release preparation, without making any modifications to your project. You'll
notice that each of the modules in the project is considered. As the command runs, you will be
prompted for values. Accept the defaults in this instance (note that running Maven in “batch mode”
avoids these prompts and will accept all of the defaults).

10 DevZuz Maestro provides an automated feature for performing releases. Maestro is an Apache License 2.0
distribution based on a pre-integrated Maven, Continuum and Archiva build platform. For more information
on Maestro please see: http://www.devzuz.com/.

240

http://www.devzuz.com/

Team Collaboration with Maven

In this project, all of the dependencies being used are releases, or part of the project.
However, if you are using a dependency that is a snapshot, an error will appear.

The prepare step ensures that there are no snapshots in the build, other than those that
will be released as part of the process (that is, other modules). This is because the
prepare step is attempting to guarantee that the build will be reproducible in the future,
and snapshots are a transient build, not ready to be used as a part of a release.

In some cases, you may encounter a plugin snapshot, even if the plugin is not declared in
the POM. This is because you are using a locally installed snapshot of a plugin (either
built yourself, or obtained from the development repository of the Maven project) that is
implied through the build life cycle. This can be corrected by adding the plugin definition to
your POM, and setting the version to the latest release (But only after verifying that your
project builds correctly with that version!).

To review the steps taken in this release process:

1. Check for correct version of the plugin and POM (for example, the appropriate SCM settings)
2. Check if there are any local modifications
3. Check for snapshots in dependency tree
4. Check for snapshots of plugins in the build
5. Modify all POM files in the build, as they will be committed to the tag
6. Run mvn clean integration-test to verify that the project will successfully build
7. Describe other preparation goals (none are configured by default, but this might include

updating the metadata in your issue tracker, or creating and committing an announcement file)
8. Describe the SCM commit and tag operations
9. Modify all POM files in the build, as they will be committed for the next development iteration

10. Describe the SCM commit operation

You might like to review the POM files that are created for steps 5 and 9, named pom.xml.tag and
pom.xml.next respectively in each module directory, to verify they are correct. You'll notice that the
version is updated in both of these files, and is set based on the values for which you were prompted
during the release process. The SCM information is also updated in the tag POM to reflect where it
will reside once it is tagged, and this is reverted in the next POM.

However, these changes are not enough to guarantee a reproducible build – it is still possible that the
plugin versions will vary, that resulting version ranges will be different, or that different profiles will be
applied. For that reason, there is also a releasepom.xml.tag file written out to each module
directory. This contains a resolved version of the POM that Maven will use to build from if it exists. In
this POM, a number of changes are made:

• the explicit version of plugins and dependencies that were used are added
• any settings from settings.xml (both per-user and per-installation) are incorporated into the

POM.
• any active profiles are explicitly activated, including profiles from settings.xml and

profiles.xml

241

Better Builds with Maven

You may have expected that inheritance would have been resolved by incorporating any
parent elements that are used, or that expressions would have been resolved. This is not
the case however, as these can be established from the other settings already populated
in the POM in a reproducible fashion.

When the final run is executed, this file will be release pom.xml in the same directory as pom.xml.
This is used by Maven, instead of the normal POM, when a build is run from this tag to ensure it
matches the same circumstances as the release build.

Having run through this process you may have noticed that only the unit and integration tests were run as
part of the test build. Recall from Chapter 6 that you learned how to configure a number of checks – so it
is important to verify that they hold as part of the release. Also, recall that in section 7.5, you created a
profile to enable those checks conditionally. To include these checks as part of the release process, you
need to enable this profile during the verification step. To do so, use the following plugin configuration:

[...]
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-release-plugin</artifactId>
 <configuration>
 <arguments>-DenableCiProfile=true</arguments>
 </configuration>
</plugin>
[...]

Try the dry run again:

C:\mvnbook\proficio\trunk> mvn release:prepare -DdryRun=true
Now that you've gone through the test run and are happy with the results, you can go for the real
thing with the following command:

C:\mvnbook\proficio\trunk> mvn release:prepare
You'll notice that this time the operations on the SCM are actually performed, and the updated POM
files are committed.
You won't be prompted for values as you were the first time – since by the default, the release plugin
will resume a previous attempt by reading the release.properties file that was created at the end
of the last run. If you need to start from the beginning, you can manually remove the
release.properties and any other POM files created using mvn release:clean, or run mvn
-Dresume=false release:prepare instead.

Once this is complete, you'll see in your SCM the new tag for the project (with the modified files),
while locally, the version is now 1.1-SNAPSHOT.

However, the release still hasn't been generated yet – for that, you need to deploy the build artifacts.
This is achieved with the release:perform goal. This is run as follows:

C:\mvnbook\proficio\trunk> mvn release:perform

242

Team Collaboration with Maven

No special arguments are required, because the release.properties file still exists to tell the goal
the version from which to release. To release from an older version, or if the release.properties
file had been removed, you would run the following:

C:\mvnbook\proficio\trunk> mvn release:perform -DconnectionUrl= \
scm:svn:file://localhost/C:/mvnbook/svn/proficio/tags/proficio-1.0

If you follow the output above, you'll see that a clean checkout was obtained from the created tag,
before running Maven from that location with the goals deploy site-deploy. This is the default for
the release plugin – to deploy all of the built artifacts, and to deploy a copy of the site.

If this is not what you want to run, you can change the goals used with the goals parameter:

C:\mvnbook\proficio\trunk> mvn release:perform -Dgoals="deploy"

However, this requires that you remember to add the parameter every time. Since the goal is for
consistency, you want to avoid such problems. To do so, add the following goals to the POM:

[...]
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-release-plugin</artifactId>
 <configuration>
 <goals>deploy</goals>
 </configuration>
</plugin>
[...]

You may also want to configure the release plugin to activate particular profiles, or to set certain
properties. Refer to the plugin reference at http://maven.apache.org/plugins/maven-release-plugin/ for
more information. It is important in these cases that you consider the settings you want, before you
run the release:prepare goal, though. To ensure reproducibility, the release plugin will confirm
that the checked out project has the same release plugin configuration as those being used (with the
exception of goals).

When the release is performed, and the built artifacts are deployed, you can examine the files that are
placed in the SCM repository. To do this, check out the tag:

C:\mvnbook> svn co \
file://localhost/C:/mvnbook/svn/proficio/tags/proficio-1.0

You'll notice that the contents of the POM match the pom.xml file, and not the release pom.xml file.
The reason for this is that the POM files in the repository are used as dependencies and the original
information is more important than the release-time information – for example, it is necessary to know
what version ranges are allowed for a dependency, rather than the specific version used for the
release. For the same reason, both the original pom.xml file and the release pom.xml files are
included in the generated JAR file.

Also, during the process you will have noticed that Javadoc and source JAR files were produced and
deployed into the repository for all the Java projects. These are configured by default in the Maven
POM as part of a profile that is activated when the release is performed.

243

http://maven.apache.org/plugins/maven-release-plugin/

Better Builds with Maven

You can disable this profile by setting the useReleaseProfile parameter to false, as follows:

[...]
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-release-plugin</artifactId>
 <configuration>
 <useReleaseProfile>false</useReleaseProfile>
 </configuration>
</plugin>
[...]

Instead, you may want to include additional actions in the profile, without having to declare and enable
an additional profile. To do this, define a profile with the identifier release-profile, as follows:

[...]
<profiles>
 <profile>
 <id>release-profile</id>
 <build>
 <!-- Extra plugin configuration would be inserted here -->
 </build>
 </profile>
</profiles>
[...]

After the release process is completed, the release.properties and any other POM files that
were created during the preparation are removed.

7.9. Summary
As you've seen throughout this chapter, and indeed this entire book, Maven was designed to address
issues that directly affect teams of developers. All of the features described in this chapter can be
used by any development team. So, whether your team is large or small, Maven provides value by
standardizing and automating the build process.

There are also strong team-related benefits in the preceding chapters – for example, the adoption of
reusable plugins can capture and extend build knowledge throughout your entire organization, rather
than creating silos of information around individual projects. The site and reports you've created can
help a team communicate the status of a project and their work more effectively. And all of these
features build on the essentials demonstrated in chapters 1 and 2 that facilitate consistent builds.

Lack of consistency is the source of many problems when working in a team, and while Maven
focuses on delivering consistency in your build infrastructure through patterns, it can aid you in
effectively using tools to achieve consistency in other areas of your development. This in turn can lead
to and facilitate best practices for developing in a community-oriented, real-time engineering style, by
making information about your projects visible and organized.

244

8. Migrating to Maven

Migrating to Maven
This chapter explains how to migrate (convert) an existing build in Ant, to a build in Maven:

• Splitting existing sources and resources into modular Maven projects
• Taking advantage of Maven's inheritance and multi-project capabilities
• Compiling, testing and building jars with Maven, using both Java 1.4 and Java 5
• Using Ant tasks from within Maven
• Using Maven with your current directory structure

This is your last chance. After this, there is
no turning back. You take the blue pill - the
story ends, you wake up in your bed and
believe whatever you want to believe. You
take the red pill - you stay in Wonderland
and I show you how deep the rabbit-hole
goes.

- Morpheus. The Matrix

245

Better Builds with Maven

8.1. Introduction
The purpose of this chapter is to show a migration path from an existing build in Ant to Maven.

The Maven migration example is based on the Spring Framework build, which uses an Ant script. This
example will take you through the step-by-step process of migrating Spring to a modularized,
component-based, Maven build.

You will learn how to start building with Maven, while still running your existing, Ant-based build
system. This will allow you to evaluate Maven's technology, while enabling you to continue with your
required work.

You will learn how to use an existing directory structure (though you will not be following the standard,
recommended Maven directory structure), how to split your sources into modules or components, how
to run Ant tasks from within Maven, and among other things, you will be introduced to the concept of
dependencies.

8.1.1. Introducing the Spring Framework
The Spring Framework is one of today's most popular Java frameworks. For the purpose of this
example, we will focus only on building version 2.0-m1 of Spring, which is the latest version at the
time of writing.

The Spring release is composed of several modules, listed in build order:

• spring-core
• spring-beans
• spring-aop
• spring-context
• spring-dao
• spring-jdbc
• spring-support
• spring-web
• spring-webmvc
• spring-remoting
• spring-portlet
• spring-jdo
• spring-hibernate2
• spring-hibernate3
• spring-toplink
• spring-ojb
• spring-mock
• spring-aspects

246

Migrating to Maven

Figure 8-1: Dependency relationship between Spring modules

In figure 8-1. you can see graphically the dependencies between the modules. Optional dependencies
are indicated by dotted lines.

Each of these modules corresponds, more or less, with the Java package structure, and each
produces a JAR. These modules are built with an Ant script from the following source directories:

• src and test: contain JDK 1.4 compatible source code and JUnit tests respectively
• tiger/src and tiger/test: contain additional JDK 1.5 compatible source code and JUnit

tests
• mock: contains the source code for the spring-mock module
• aspectj/src and aspectj/test: contain the source code for the spring-aspects

module

Each of the source directories also include classpath resources (XML files, properties files, TLD files,
etc.).

For Spring, the Ant script compiles each of these different source directories and then creates a JAR
for each module, using inclusions and exclusions that are based on the Java packages of each class.
The src and tiger/src directories are compiled to the same destination as the test and
tiger/test directories, resulting in JARs that contain both 1.4 and 1.5 classes.

247

Better Builds with Maven

8.2. Where to Begin?
With Maven, the rule of thumb to use is to produce one artifact (JAR, WAR, etc.) per Maven project
file. In the Spring example, that means you will need to have a Maven project (a POM) for each of the
modules listed above.

To start, you will create a subdirectory called 'm2' to keep all the necessary Maven changes clearly
separated from the current build system. Inside the 'm2' directory, you will need to create a directory
for each of Spring's modules.

Figure 8-2: A sample spring module directory

248

Migrating to Maven

In the m2 directory, you will need to create a parent POM. You will use the parent POM to store the
common configuration settings that apply to all of the modules. For example, each module will inherit
the following values (settings) from the parent POM.

• groupId: this setting indicates your area of influence, company, department, project, etc., and
it should mimic standard package naming conventions to avoid duplicate values. For this
example, you will use com.devzuz.m2book.migrating, as it is our 'unofficial' example
version of Spring; however, the Spring team would use org.springframework

• artifactId: the setting specifies the name of this module (for example, spring-parent)
• version: this setting should always represent the next release version number appended with

- SNAPSHOT – that is, the version you are developing in order to release. Recall from previous
chapters that during the release process, Maven will convert to the definitive, non-snapshot
version for a short period of time, in order to tag the release in your SCM.

• packaging: the jar, war, and ear values should be obvious to you (a pom value means
that this project is used for metadata only)

The other values are not strictly required, and are primarily used for documentation purposes.

<groupId>com.devzuz.m2book.migrating</groupId>
<artifactId>spring-parent</artifactId>
<version>2.0-m1-SNAPSHOT</version>
<name>Spring parent</name>
<packaging>pom</packaging>
<description>Spring Framework</description>
<inceptionYear>2002</inceptionYear>
<url>http://www.springframework.org</url>
<organization>
 <name>The Spring Framework Project</name>
</organization>

In this parent POM we can also add dependencies such as JUnit, which will be used for testing in
every module, thereby eliminating the requirement to specify the dependency repeatedly across
multiple modules.

<dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
</dependencies>

As explained previously, in Spring, the main source and test directories are src and test,
respectively. Let's begin with these directories.

249

http://java.sun.com/docs/books/jls/third_edition/html/packages.html#7.7

Better Builds with Maven

Using the following code snippet from Spring's Ant build script, in the buildmain target, you can
retrieve some of the configuration parameters for the compiler.

<javac destdir="${target.classes.dir}" source="1.3" target="1.3" debug="${debug}"
 deprecation="false" optimize="false" failonerror="true">
 <src path="${src.dir}"/>
 <!-- Include Commons Attributes generated Java sources -->
 <src path="${commons.attributes.tempdir.src}"/>
 <classpath refid="all-libs"/>
</javac>

As you can see these include the source and target compatibility (1.3), deprecation and optimize
(false), and failonerror (true) values. These last three properties use Maven's default values, so
there is no need for you to add the configuration parameters.

For the debug attribute, Spring's Ant script uses a debug parameter, so to specify the required debug
function in Maven, you will need to append -Dmaven.compiler.debug=false to the mvn command
(by default this is set to true). For now, you don't have to worry about the commons-attributes
generated sources mentioned in the snippet, as you will learn about that later in this chapter. Recall
from Chapter 2, that Maven automatically manages the classpath from its list of dependencies.

At this point, your build section will look like this:

<build>
 <sourceDirectory>../../src</sourceDirectory>
 <testSourceDirectory>../../test</testSourceDirectory>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.3</source>
 <target>1.3</target>
 </configuration>
 </plugin>
 </plugins>
</build>

250

Migrating to Maven

The other configuration that will be shared is related to the JUnit tests. From the tests target in the
Ant script:

<junit forkmode="perBatch" printsummary="yes" haltonfailure="yes"
haltonerror="yes">
 <jvmarg line="-Djava.awt.headless=true -XX:MaxPermSize=128m -Xmx128m"/>
 <!-- Must go first to ensure any jndi.properties files etc take precedence -->
 <classpath location="${target.testclasses.dir}"/>
 <classpath location="${target.mockclasses.dir}"/>
 <classpath location="${target.classes.dir}"/>
 <!-- Need files loaded as resources -->
 <classpath location="${test.dir}"/>
 <classpath refid="all-libs"/>
 <formatter type="plain" usefile="false"/>
 <formatter type="xml"/>
 <batchtest fork="yes" todir="${reports.dir}">
 <fileset dir="${target.testclasses.dir}" includes="${test.includes}"
excludes="${test.excludes}"/>
 </batchtest>
</junit>

You can extract some configuration information from the previous code:

• forkMode=”perBatch” matches with Maven's forkMode parameter with a value of once,
since the concept of a batch for testing does not exist.

• You will not need any printsummary, haltonfailure and haltonerror settings, as
Maven prints the test summary and stops for any test error or failure, by default.

• formatter elements are not required as Maven generates both plain text and xml
reports.

• The nested element jvmarg is mapped to the configuration parameter argLine

• As previously noted, classpath is automatically managed by Maven from the list of
dependencies.

• Maven sets the reports destination directory (todir) to target/surefire-reports, by
default, and this doesn't need to be changed.

• You will need to specify the value of the properties test.includes and
test.excludes from the nested fileset; this value is read from the
project.properties file loaded from the Ant script (refer to the code snippet below for
details).

• Maven uses the default value from the compiler plugin, so you will not need to locate the
test classes directory (dir).

251

Better Builds with Maven

Wildcards to be matched by JUnit tests.
Convention is that our JUnit test classes have XXXTests-style names.
test.includes=**/*Tests.class
#
Wildcards to exclude among JUnit tests.
Second exclude needs to be used for JDK 1.3, due to Hibernate 3.1
being compiled with target JDK 1.4.
test.excludes=**/Abstract*
#test.excludes=**/Abstract* org/springframework/orm/hibernate3/**

The includes and excludes referenced above, translate directly into the include/exclude elements of
the POM's plugin configuration.

Since Maven requires JDK 1.4 to run you do not need to exclude hibernate3 tests.
Note that it is possible to use another lower JVM to run tests if you wish – refer to the
Surefire plugin reference documentation for more information.

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>
 <forkMode>once</forkMode>
 <childDelegation>false</childDelegation>
 <argLine>
 -Djava.awt.headless=true -XX:MaxPermSize=128m -Xmx128m
 </argLine>
 <includes>
 <include>**/*Tests.class</include>
 </includes>
 <excludes>
 <exclude>**/Abstract*</exclude>
 </excludes>
 </configuration>
</plugin>

The childDelegation option is required to prevent conflicts when running under Java 5 between
the XML parser provided by the JDK and the one included in the dependencies in some modules,
mandatory when building in JDK 1.4. It makes tests run using the standard classloader delegation
instead of the default Maven isolated classloader. When building only on Java 5 you could
remove that option and the XML parser (Xerces) and APIs (xml-apis) dependencies.

Spring's Ant build script also makes use of the commons-attributes compiler in its compileattr and
compiletestattr targets, which are processed prior to the compilation. The commons-attributes
compiler processes javadoc style annotations – it was created before Java supported annotations in
the core language on JDK 1.5 - and generates sources from them that have to be compiled with the
normal Java compiler.

252

Migrating to Maven

From compileattr:

<!-- Compile to a temp directory: Commons Attributes will place Java Source here.
-->
<attribute-compiler destdir="${commons.attributes.tempdir.src}">
 <!--
 Only the PathMap attribute in the org.springframework.web.servlet.handler.metadata
 package currently needs to be shipped with an attribute, to support indexing.
 -->
 <fileset dir="${src.dir}" includes="**/metadata/*.java"/>
</attribute-compiler>

From compiletestattr:

<!-- Compile to a temp directory: Commons Attributes will place Java Source here.
-->
<attribute-compiler destdir="${commons.attributes.tempdir.test}">
 <fileset dir="${test.dir}" includes="org/springframework/aop/**/*.java"/>
 <fileset dir="${test.dir}" includes="org/springframework/jmx/**/*.java"/>
</attribute-compiler>

In Maven, this same function can be accomplished by adding the commons-attributes plugin to the
build section in the POM. Maven handles the source and destination directories automatically, so you
will only need to add the inclusions for the main source and test source compilation.

<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>commons-attributes-maven-plugin</artifactId>
 <executions>
 <execution>
 <configuration>
 <includes>
 <include>**/metadata/*.java</include>
 </includes>
 <testIncludes>
 <include>org/springframework/aop/**/*.java</include>
 <include>org/springframework/jmx/**/*.java</include>
 </testIncludes>
 </configuration>
 <goals>
 <goal>compile</goal>
 <goal>test-compile</goal>
 </goals>
 </execution>
 </executions>
</plugin>

Later in this chapter you will need to modify these test configurations.

253

Better Builds with Maven

8.3. Creating POM files
Now that you have the basic configuration shared by all modules (project information, compiler
configuration, JUnit test configuration, etc.), you need to create the POM files for each of Spring's
modules. In each subdirectory, you will need to create a POM that extends the parent POM.

The following is the POM for the spring-core module. This module is the best to begin with because
all of the other modules depend on it.

<parent>
 <groupId>com.devzuz.m2book.migrating</groupId>
 <artifactId>spring-parent</artifactId>
 <version>2.0-m1-SNAPSHOT</version>
</parent>
<artifactId>spring-core</artifactId>
<name>Spring core</name>

Again, you won't need to specify the version or groupId elements of the current module, as those
values are inherited from parent POM, which centralizes and maintains information common to the
project.

8.4. Compiling
In this section, you will start to compile the main Spring source; tests will be dealt with later in the
chapter. To begin, review the following code snippet from Spring's Ant script, where spring-core
JAR is created:

<jar jarfile="${dist.dir}/modules/spring-core.jar">
 <fileset dir="${target.classes.dir}">
 <include name="org/springframework/core/**"/>
 <include name="org/springframework/util/**"/>
 </fileset>
 <manifest>
 <attribute name="Implementation-Title" value="${spring-title}"/>
 <attribute name="Implementation-Version" value="${spring-version}"/>
 <attribute name="Spring-Version" value="${spring-version}"/>
 </manifest>
</jar>

From the previous code snippet, you can determine which classes are included in the JAR and what
attributes are written into the JAR's manifest. Maven will automatically set manifest attributes such as
name, version, description, and organization name to the values in the POM. While manifest entries
can also be customized with additional configuration to the JAR plugin, in this case the defaults are
sufficient. However, you will need to tell Maven to pick the correct classes and resources from the
core and util packages.

For the resources, you will need to add a resources element in the build section, setting the files
you want to include (by default Maven will pick everything from the resource directory). As you saw
before, since the sources and resources are in the same directory in the current Spring build, you will
need to exclude the *.java files from the resources, or they will get included in the JAR.

254

Migrating to Maven

For the classes, you will need to configure the compiler plugin to include only those in the core and
util packages, because as with resources, Maven will by default compile everything from the source
directory, which is inherited from the parent POM.

<build>
 <resources>
 <resource>
 <directory>../../src</directory>
 <includes>
 <include>org/springframework/core/**</include>
 <include>org/springframework/util/**</include>
 </includes>
 <excludes>
 <exclude>**/*.java</exclude>
 </excludes>
 </resource>
 </resources>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <includes>
 <include>org/springframework/core/**</include>
 <include>org/springframework/util/**</include>
 </includes>
 </configuration>
 </plugin>
 </plugins>
</build>

255

Better Builds with Maven

To compile your Spring build, you can now run mvn compile in spring-core directory. You will
see a long list of compilation failures, beginning with the following:

[INFO] --
[ERROR] BUILD FAILURE
[INFO] --
[INFO] Compilation failure
C:\dev\m2book\code\migrating\spring\m2\spring-
core\..\..\src\org\springframework\core\io\support\PathMatchingResourcePatternResol
ver.java:[30,34] package org.apache.commons.logging does not exist
C:\dev\m2book\code\migrating\spring\m2\spring-
core\..\..\src\org\springframework\core\io\support\PathMatchingResourcePatternResol
ver.java:[31,34] package org.apache.commons.logging does not exist
C:\dev\m2book\code\migrating\spring\m2\spring-
core\..\..\src\org\springframework\core\io\support\PathMatchingResourcePatternResol
ver.java:[107,24] cannot find symbol
symbol : class Log
location: class
org.springframework.core.io.support.PathMatchingResourcePatternResolver
C:\dev\m2book\code\migrating\spring\m2\spring-
core\..\..\src\org\springframework\util\xml\SimpleSaxErrorHandler.java:[19,34]
package org.apache.commons.logging does not exist

These are typical compiler messages, caused by the required classes not being on the classpath.

From the previous output, you now know that you need the Apache Commons Logging library
(commons-logging) to be added to the dependencies section in the POM. But, what groupid,
artifactId and version should we use?

For the groupId and artifactId, you need to check the central repository at ibiblio. Typically, the
convention is to use a groupId that mirrors the package name, changing dots to slashes. For
example, commons-logging groupId would become org.apache.commons.logging, located
in the org/apache/commons/logging directory in the repository.

However, for historical reasons some groupId values don't follow this convention and use only the
name of the project. In the case of commons-logging, the actual groupId is commons-logging.

Regarding the artifactId, it's usually the JAR name without a version (in this case commons-
logging). If you check the repository, you will find all the available versions of commons-logging under
http://www.ibiblio.org/maven2/commons-logging/commons-logging/11.

As an alternative, you can search the repository using Google. Specify
site:www.ibiblio.org/maven2 commons logging, and then choose from the search results,
the option that is closest to what is required by your project.

11 Artifacts can also be obtained from http://repo.devzuz.com/archiva/repository/maven2/ and
http://repo1.maven.org/maven2/.

256

http://repo1.maven.org/maven2/
http://repo.devzuz.com/archiva/repository/maven2/
http://www.ibiblio.org/maven2/commons-logging/commons-logging/
http://www.ibiblio.org/maven2/commons-logging/commons-logging/
http://www.ibiblio.org/maven2

Migrating to Maven

With regard to the version, you will find that there is documentation for all of Spring's dependencies in
readme.txt in the lib directory of the Spring source. You can use this as a reference to determine
the versions of each of the dependencies. However, you have to be careful as the documentation may
contain mistakes and/or inaccuracies. For instance, during the process of migrating Spring to Maven,
we discovered that the commons-beanutils version stated in the documentation is wrong and that
some required dependencies are missing from the documentation.

<dependencies>
 <dependency>
 <groupId>commons-logging</groupId>
 <artifactId>commons-logging</artifactId>
 <version>1.0.4</version>
 </dependency>
</dependencies>

Usually you will convert your own project, so you will have first hand knowledge about the
dependencies and versions used. When needed, there are some other options to try to determine the
appropriate versions for the dependencies included in your build:

• Check if the JAR has the version in the file name
• Open the JAR file and look in the manifest file META-INF/MANIFEST.MF
• For advanced users, search the ibiblio repository through Google by calculating the MD5

checksum of the JAR file with a program such as md5sum, and then search in Google pre-
pending site:www.ibiblio.org/maven2 to the query. For example, for the
hibernate3.jar provided with Spring under lib/hibernate, you could search with:
site:www.ibiblio.org/maven2 78d5c38f1415efc64f7498f828d8069a

The search will return: www.ibiblio.org/maven2/org/hibernate/hibernate/3.1/hibernate-
3.1.jar.md5

You can see that the last directory is the version (3.1), the previous directory is the artifactId
(hibernate) and the other directories compose the groupId, with the slashes changed to dots
(org.hibernate)

An easier way to search for dependencies, using a Web interface, has been developed
and is available as part of Maestro. For details on Maven Archiva, the artifact repository
manager, refer to the Maven Archiva project.12

While adding dependencies can be the most painful part of migrating to Maven, explicit
dependency management is one of the biggest benefits of Maven once you have invested
the effort upfront. So, although you could simply follow the same behavior used in Ant (by
adding all the dependencies in the parent POM so that, through inheritance, all sub-
modules would use the same dependencies), we strongly encourage and recommend that
you invest the time at the outset of your migration, to make explicit the dependencies and
interrelationships of your projects. Doing so will result in cleaner, component-oriented,
modular projects that are easier to maintain in the long term.

12 Maven Archiva is part of DevZuz Maestro. Maestro is an Apache License 2.0 distribution based on a pre-
integrated Maven, Continuum and Archiva build platform. For more information on Maestro please see:
http://www.devzuz.com/

257

http://www.devzuz.com/
http://maven.apache.org/archiva/
http://www.ibiblio.org/maven2/org/hibernate/hibernate/3.1/hibernate-3.1.jar.md5
http://www.ibiblio.org/maven2/org/hibernate/hibernate/3.1/hibernate-3.1.jar.md5
http://www.google.com/search?q=site:www.ibiblio.org/maven2+78d5c38f1415efc64f7498f828d8069a
http://opensource2.atlassian.com/projects/spring/browse/SPR-1575
http://opensource2.atlassian.com/projects/spring/browse/SPR-1174

Better Builds with Maven

Running mvn compile again and repeating the process previously outlined for commons-logging,
you will notice that you also need Apache Commons Collections (aka commons-collections) and
log4j.

<dependency>
 <groupId>commons-collections</groupId>
 <artifactId>commons-collections</artifactId>
 <version>3.1</version>
</dependency>
<dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.9</version>
 <optional>true</optional>
</dependency>

Notice that log4j is marked as optional. Optional dependencies are not included transitively, so
log4j will not be included in other projects that depend on this. This is because in other projects, you
may decide to use another log implementation, and it is just for the convenience of the users. Using
the optional tag does not affect the current project.

Now, run mvn compile again - this time all of the sources for spring-core will compile.

8.5. Testing
Now you're ready to compile and run the tests. For the first step, you will repeat the previous
procedure for the main classes, setting which test resources to use, and setting the JUnit test sources
to compile. After compiling the tests, we will cover how to run the tests.

8.5.1. Compiling Tests
Setting the test resources is identical to setting the main resources, with the exception of changing the
location from which the element name and directory are pulled. In addition, you will need to add the
log4j.properties file required for logging configuration.

<testResources>
 <testResource>
 <directory>../../test</directory>
 <includes>
 <include>log4j.properties</include>
 <include>org/springframework/core/**</include>
 <include>org/springframework/util/**</include>
 </includes>
 <excludes>
 <exclude>**/*.java</exclude>
 </excludes>
 </testResource>
</testResources>

Setting the test sources for compilation follows the same procedure, as well. Inside the maven-
compiler-plugin configuration, you will need to add the testIncludes element.

258

Migrating to Maven

<testIncludes>
 <include>org/springframework/core/**</include>
 <include>org/springframework/util/**</include>
</testIncludes>

You may also want to check the Log4JConfigurerTests.java class for any hard codes links to
properties files and change them accordingly.

Now, if you try to compile the test classes by running mvn test-compile, as before, you will get
compilation errors, but this time there is a special case where the compiler complains because some
of the classes from the org.springframework.mock, org.springframework.web and
org.springframework.beans packages are missing. It may appear initially that spring-core
depends on spring-mock, spring-web and spring-beans modules, but if you try to compile
those other modules, you will see that their main classes, not tests, depend on classes from
spring-core. As a result, we cannot add a dependency from spring-core without creating a
circular dependency. In other words, if spring-core depends on spring-beans and spring-
beans depends on spring-core, which one do we build first? Impossible to know.

So, the key here is to understand that some of the test classes are not actually unit tests for spring-
core, but rather require other modules to be present. Therefore, it makes sense to exclude all the
test classes that reference other modules from this one and include them elsewhere.
To exclude test classes in Maven, add the testExcludes element to the compiler configuration as
follows.

<testExcludes>
 <exclude>org/springframework/util/comparator/ComparatorTests.java</exclude>
 <exclude>org/springframework/util/ClassUtilsTests.java</exclude>
 <exclude>org/springframework/util/ObjectUtilsTests.java</exclude>
 <exclude>org/springframework/util/ReflectionUtilsTests.java</exclude>
 <exclude>org/springframework/util/SerializationTestUtils.java</exclude>
 <exclude>org/springframework/core/io/ResourceTests.java</exclude>
</testExcludes>

Now, when you run mvn test-compile, you will see the following error:

package javax.servlet does not exist
This means that the following dependency must be added to the POM, in order to compile the tests:

<dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>servlet-api</artifactId>
 <version>2.4</version>
 <scope>test</scope>
</dependency>

259

Better Builds with Maven

The scope is set to test, as this is not needed for the main sources.
If you run mvn test-compile again you will have a successful build, as all the test classes
compile correctly now.

8.5.2. Running Tests
Running the tests in Maven, simply requires running mvn test. However, when you run this
command, you will get the following error report:

Results :
[surefire] Tests run: 113, Failures: 1, Errors: 1
[INFO] --
[ERROR] BUILD ERROR
[INFO] --
[INFO] There are test failures.
[INFO] --

Upon closer examination of the report output, you will find the following:

[surefire] Running
org.springframework.core.io.support.PathMatchingResourcePatternResolverTests
[surefire] Tests run: 5, Failures: 1, Errors: 1, Time elapsed: 0.015 sec <<<<<<<<
FAILURE !!

This output means that this test has logged a JUnit failure and error. To debug the problem, you will
need to check the test logs under target/surefire-reports, for the test class that is failing
org.springframework.core.io.support.PathMatchingResourcePatternResolverT
ests.txt. Within this file, there is a section for each failed test called stacktrace.

The first section starts with java.io.FileNotFoundException: class path resource
[org/aopalliance/] cannot be resolved to URL because it does not exist.

This indicates that there is something missing in the classpath that is required to run the tests. The
org.aopalliance package is inside the aopalliance JAR, so to resolve the problem add the
following to your POM

<dependency>
 <groupId>aopalliance</groupId>
 <artifactId>aopalliance</artifactId>
 <version>1.0</version>
 <scope>test</scope>
</dependency>

260

Migrating to Maven

Now run mvn test again. You will get the following wonderful report:

[INFO] --
[INFO] BUILD SUCCESSFUL
[INFO] --

The last step in migrating this module (spring-core) from Ant to Maven, is to run mvn install to
make the resulting JAR available to other projects in your local Maven repository. This command can
be used instead most of the time, as it will process all of the previous phases of the build life cycle
(generate sources, compile, compile tests, run tests, etc.)

261

Better Builds with Maven

8.6. Other Modules
Now that you have one module working it is time to move on to the other modules. If you follow the
order of the modules described at the beginning of the chapter you will be fine, otherwise you will find
that the main classes from some of the modules reference classes from modules that have not yet
been built. See figure 8-1 to get the overall picture of the interdependencies between the Spring
modules.

8.6.1. Avoiding Duplication
As soon as you begin migrating the second module, you will find that you are repeating yourself. For
instance, you will be adding the Surefire plugin configuration settings repeatedly for each module that
you convert. To avoid duplication, move these configuration settings to the parent POM instead. That
way, each of the modules will be able to inherit the required Surefire configuration.

In the same way, instead of repeatedly adding the same dependency version information to each
module, use the parent POM's dependencyManagement section to specify this information once,
and remove the versions from the individual modules (see Chapter 3 for more information).

Using the parent POM to centralize this information makes it possible to upgrade a dependency
version across all sub-projects from a single location.

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>commons-logging</groupId>
 <artifactId>commons-logging</artifactId>
 <version>1.0.4</version>
 </dependency>
 </dependencies>
</dependencyManagement>

The following are some variables that may also be helpful to reduce duplication:

• ${project.version}: version of the current POM being built
• ${project.groupId}: groupId of the current POM being built

For example, you can refer to spring-core from spring-beans with the following, since they
have the same groupId and version:

<dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>spring-core</artifactId>
 <version>${project.version}</version>
</dependency>

262

Migrating to Maven

8.6.2. Referring to Test Classes from Other Modules
If you have tests from one component that refer to tests from other modules, there is a procedure you
can use. Although it is typically not recommended, in this case it is necessary to avoid refactoring the
test source code. First, make sure that when you run mvn install, that a JAR that contains the
test classes is also installed in the repository:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <executions>
 <execution>
 <goals>
 <goal>test-jar</goal>
 </goals>
 </execution>
 </executions>
</plugin>

Once that JAR is installed, you can use it as a dependency for other components, by specifying the
test-jar type. However, be sure to put that JAR in the test scope as follows:

<dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>spring-beans</artifactId>
 <version>${project.version}</version>
 <type>test-jar</type>
 <scope>test</scope>
</dependency>

A final note on referring to test classes from other modules: if you have all of Spring's mock classes
inside the same module, this can cause previously-described cyclic dependencies problem. To
eliminate this problem, you can split Spring's mock classes into spring-context-mock, with only
those classes related to spring-context module, and spring-web-mock, with only those
classes related to spring-web. Generally with Maven, it's easier to deal with small modules,
particularly in light of transitive dependencies.

8.6.3. Building Java 5 Classes
Some of Spring's modules include Java 5 classes from the tiger folder. As the compiler plugin was
earlier configured to compile with Java 1.3 compatibility, how can the Java 1.5 sources be added? To
do this with Maven, you need to create a new module with only Java 5 classes instead of adding them
to the same module and mixing classes with different requirements. So, you will need to create a new
spring-beans-tiger module.

Consider that if you include some classes compiled for Java 1.3 and some compiled for Java 5 in the
same JAR, any users, attempting to use one of the Java 5 classes under Java 1.3 or 1.4, would
experience runtime errors. By splitting them into different modules, users will know that if they depend
on the module composed of Java 5 classes, they will need to run them under Java 5.

263

Better Builds with Maven

As with the other modules that have been covered, the Java 5 modules will share a common
configuration for the compiler. The best way to split them is to create a tiger folder with the Java 5
parent POM, and then a directory for each one of the individual tiger modules, as follows:

Figure 8-3: A tiger module directory

The final directory structure should appear as follows:

Figure 8-4: The final directory structure

264

Migrating to Maven

Figure 8-5: Dependency relationship, with all modules

In the tiger POM, you will need to add a module entry for each of the directories, as well as build
sections with source folders and compiler options:

<modules>
 <module>spring-beans-tiger</module>
 <module>spring-aop-tiger</module>
 <module>spring-dao-tiger</module>
 <module>spring-jdbc-tiger</module>
 <module>spring-support-tiger</module>
 <module>spring-hibernate3-tiger</module>
 <module>spring-aspects</module>
</modules>
<build>
 <sourceDirectory>../../../tiger/src</sourceDirectory>
 <testSourceDirectory>../../../tiger/test</testSourceDirectory>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.5</source>
 <target>1.5</target>
 </configuration>
 </plugin>
 </plugins>
</build>

265

Better Builds with Maven

In the parent POM, you just need a new module entry for the tiger folder, but to still be able to build
the other modules when using Java 1.4 you will add that module in a profile that will be triggered only
when using 1.5 JDK.

<profiles>
 <profile>
 <id>jdk1.5</id>
 <activation>
 <jdk>1.5</jdk>
 </activation>
 <modules>
 <module>tiger</module>
 </modules>
 </profile>
</profiles>

8.6.4. Using Ant Tasks From Inside Maven
In certain migration cases, you may find that Maven does not have a plugin for a particular task or an
Ant target is so small that it may not be worth creating a new plugin. In this case, Maven can call Ant
tasks directly from a POM using the maven-antrun-plugin.

For example, with the Spring migration, you need to use the Ant task in the spring-remoting
module to use the RMI compiler.

From Ant, this is:

<rmic base="${target.classes.dir}"
 classname="org.springframework.remoting.rmi.RmiInvocationWrapper"/>
<rmic base="${target.classes.dir}"
 classname="org.springframework.remoting.rmi.RmiInvocationWrapper"
iiop="true">
 <classpath refid="all-libs"/>
</rmic>

266

Migrating to Maven

To include this in Maven build, add:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-antrun-plugin</artifactId>
 <executions>
 <execution>
 <phase>process-classes</phase>
 <configuration>
 <tasks>
 <echo>Running rmic</echo>
 <rmic base="${project.build.directory}/classes"
 classname="org.springframework.remoting.rmi.RmiInvocationWrapper"/>
 <rmic base="${project.build.directory}/classes"
 classname="org.springframework.remoting.rmi.RmiInvocationWrapper"
 iiop="true"/>
 <classpath refid="maven.compile.classpath"/>
 </rmic>
 </tasks>
 </configuration>
 <goals>
 <goal>run</goal>
 </goals>
 </execution>
 </executions>
 <dependencies>
 <dependency>
 <groupId>com.sun</groupId>
 <artifactId>tools</artifactId>
 <scope>system</scope>
 <version>1.4</version>
 <systemPath>${java.home}/../lib/tools.jar</systemPath>
 </dependency>
 </dependencies>
</plugin>

As shown in the code snippet above, there are some references available already, such as
${project.build.directory} and maven.compile.classpath, which is a classpath
reference constructed from all of the dependencies in the compile scope or lower. There are also
references for anything that was added to the plugin's dependencies section, which applies to that
plugin only, such as the reference to the tools.jar above, which is bundled with the JDK, and
required by the RMI task.

To complete the configuration, you will need to determine when Maven should run the Ant task. In this
case, the rmic task, will take the compiled classes and generate the rmi skeleton, stub and tie
classes from them. So, the most appropriate phase in which to run this Ant task is in the process-
classes phase.

267

Better Builds with Maven

8.6.5. Non-redistributable Jars
You will find that some of the modules in the Spring build depend on JARs that are not available in the
Maven central repository. For example, Sun's Activation Framework and JavaMail are not
redistributable from the repository due to constraints in their licenses. You may need to download
them yourself from the Sun site or get them from the lib directory in the example code for this chapter.
You can then install them in your local repository with the following command.

mvn install:install-file -Dfile=<path-to-file> -DgroupId=<group-id>
-DartifactId=<artifact-id> -Dversion=<version> -Dpackaging=<packaging>

For instance, to install JavaMail:

mvn install:install-file -Dfile=[path_to_file]/mail.jar
-DgroupId=javax.mail -DartifactId=mail -Dversion=1.3.2 -Dpackaging=jar

You will only need to do this process once for all of your projects or you may use a corporate
repository to share them across your organization. For more information on dealing with this issue,
see http://maven.apache.org/guides/mini/guide-coping-with-sun-jars.html.

8.6.6. Some Special Cases
In addition to the procedures outlined previously for migrating Spring to Maven, there are two
additional, special cases that must be handled. These issues were shared with the Spring developer
community and are listed below:

• Moving one test class, NamespaceHandlerUtilsTests, from test directory to
tiger/test directory – as it depends on a tiger class

• Fixing toplink tests that don't compile against the oracle toplink jar (Spring developers use a
different version than the official one from Oracle)

In this example it is necessary to comment out two unit tests, which used relative paths in
Log4JConfigurerTests class, as these test cases will not work in both Maven and Ant. Using
classpath resources is recommended over using file system resources.

There is some additional configuration required for some modules, such as spring-
aspects, which uses AspectJ for weaving the classes. These can be viewed in the
example code.

268

http://opensource2.atlassian.com/projects/spring/browse/SPR-1642
http://opensource2.atlassian.com/projects/spring/browse/SPR-1642
http://opensource.atlassian.com/projects/spring/browse/SPR-1640
http://opensource.atlassian.com/projects/spring/browse/SPR-1640
http://opensource.atlassian.com/projects/spring/browse/SPR-1640
http://opensource.atlassian.com/projects/spring/browse/SPR-1640
http://opensource.atlassian.com/projects/spring/browse/SPR-1640
http://opensource.atlassian.com/projects/spring/browse/SPR-1640
http://maven.apache.org/guides/mini/guide-coping-with-sun-jars.html

Migrating to Maven

8.7. Restructuring the Code
If you do decide to use Maven for your project, it it highly recommended that you go through the
restructuring process to take advantage of the many time-saving and simplifying conventions within
Maven.

For example, for the spring-core module, you would move all Java files under
org/springframework/core and org/springframework/util from the original src folder
to the module's folder src/main/java.

All of the other files under those two packages would go to src/main/resources. The same for
tests, these would move from the original test folder to src/test/java and
src/test/resources respectively for Java sources and other files - just remember not to move
the excluded tests (ComparatorTests, ClassUtilsTests, ObjectUtilsTests,
ReflectionUtilsTests, SerializationTestUtils and ResourceTests).

By adopting Maven's standard directory structure, you can simplify the POM significantly, reducing its
size by two-thirds!

8.8. Summary
By following and completing this chapter, you will be able to take an existing Ant-based build, split it
into modular components (if needed), compile and test the code, create JARs, and install those JARs
in your local repository using Maven. At the same time, you will be able to keep your current build
working. Once you decide to switch completely to Maven, you will be able to take advantage of the
benefits of adopting Maven's standard directory structure. By doing this, you would eliminate the need
to include and exclude sources and resources “by hand” in the POM files as shown in this chapter.

Once you have spent this initial setup time Maven, you can realize Maven' other benefits - advantages
such as built-in project documentation generation, reports, and quality metrics.

Finally, in addition to the improvements to your build life cycle, Maven can eliminate the requirement
of storing jars in a source code management system. In the case of the Spring example, as Maven
downloads everything it needs and shares it across all your Maven projects automatically - you can
delete that 80 MB lib folder.

Now that you have seen how to do this for Spring, you can apply similar concepts to your own Ant
based build.

269

Better Builds with Maven

This page left intentionally blank.

270

Appendix A: Resources for Plugin Developers

Appendix A: Resources for Plugin
Developers
In this appendix you will find:

• Maven's Life Cycles
• Mojo Parameter Expressions
• Plugin Metadata

Scotty: She's all yours, sir. All systems
automated and ready. A chimpanzee and
two trainees could run her!

Kirk: Thank you, Mr. Scott, I'll try not to
take that personally.

- Star Trek

271

Better Builds with Maven

A.1. Maven's Life Cycles
Below is a discussion of Maven's three life cycles and their default mappings. It begins by listing the
phases in each life cycle, along with a short description for the mojos which should be bound to each.
It continues by describing the mojos bound to the default life cycle for both the jar and maven-plugin
packagings. Finally, this section will describe the mojos bound by default to the clean and site life
cycles.

A.1.1. The default Life Cycle
Maven provides three life cycles, corresponding to the three major activities performed by Maven:
building a project from source, cleaning a project of the files generated by a build, and generating a
project web site.

For the default life cycle, mojo-binding defaults are specified in a packaging-specific manner. This is
necessary to accommodate the inevitable variability of requirements for building different types of
projects. This section contains a listing of the phases in the default life cycle, along with a summary of
bindings for the jar and maven-plugin packagings.

 Life-cycle phases
The default life cycle is executed in order to perform a traditional build. In other words, it takes care of
compiling the project's code, performing any associated tests, archiving it into a jar, and distributing it
into the Maven repository system. It contains the following phases:

1. validate – verify that the configuration of Maven, and the content of the current set of
POMs to be built is valid.

2. initialize – perform any initialization steps required before the main part of the build can
start.

3. generate-sources – generate compilable code from other source formats.

4. process-sources – perform any source modification processes necessary to prepare the
code for compilation. For example, a mojo may apply source code patches here.

5. generate-resources – generate non-code resources (such as configuration files, etc.)
from other source formats.

6. process-resources – perform any modification of non-code resources necessary. This
may include copying these resources into the target classpath directory in a Java build.

7. compile – compile source code into binary form, in the target output location.

8. process-classes – perform any post-processing of the binaries produced in the preceding
step, such as instrumentation or offline code-weaving, as when using Aspect-Oriented
Programming techniques.

9. generate-test-sources – generate compilable unit test code from other source formats.

272

Appendix A: Resources for Plugin Developers

10. process-test-sources – perform any source modification processes necessary to
prepare the unit test code for compilation. For example, a mojo may apply source code
patches here.

11. generate-test-resources – generate non-code testing resources (such as configuration
files, etc.) from other source formats.

12. process-test-resources – perform any modification of non-code testing resources
necessary. This may include copying these resources into the testing target classpath location
in a Java build.

13. test-compile – compile unit test source code into binary form, in the testing target output
location.

14. test – execute unit tests on the application compiled and assembled up to step 8 above.

15. package – assemble the tested application code and resources into a distributable archive.

16. preintegration-test – setup the integration testing environment for this project. This
may involve installing the archive from the preceding step into some sort of application server.

17. integration-test – execute any integration tests defined for this project, using the
environment configured in the preceding step.

18. post-integration-test – return the environment to its baseline form after executing the
integration tests in the preceding step. This could involve removing the archive produced in
step 15 from the application server used to test it.

19. verify – verify the contents of the distributable archive, before it is available for installation
or deployment.

20. install – install the distributable archive into the local Maven repository.

21. deploy – deploy the distributable archive into the remote Maven repository configured in the
distributionManagement section of the POM.

273

Better Builds with Maven

 Bindings for the jar packaging
Below are the default life-cycle bindings for the jar packaging. Alongside each, you will find a short
description of what that mojo does.

Table A-1: The default life-cycle bindings for the jar packaging

Phase Mojo Plugin Description
process-
resources

resourc
es

maven-resources-
plugin Copy non-source-code resources to the staging

directory for jar creation. Filter variables if necessary.
compile compile maven-compiler-

plugin Compile project source code to the staging directory
for jar creation.

process-test-
resources

testRes
ources

maven-resources-
plugin Copy non-source-code test resources to the test output

directory for unit-test compilation.
test-compile testCom

pile
maven-compiler-
plugin Compile unit-test source code to the test output

directory.
test test maven-surefire-

plugin Execute project unit tests.

package jar maven-jar-plugin Create a jar archive from the staging directory.
install install maven-install-

plugin Install the jar archive into the local Maven repository.

deploy deploy maven-deploy-
plugin Deploy the jar archive to a remote Maven repository,

specified in the POM distribution Management
section.

274

Appendix A: Resources for Plugin Developers

 Bindings for the maven-plugin packaging
The maven-plugin project packaging behaves in almost the same way as the more common jar
packaging. Indeed, maven-plugin artifacts are in fact jar files. As such, they undergo the same basic
processes of marshaling non-source-code resources, compiling source code, testing, packaging, and
the rest. However, the maven-plugin packaging also introduces a few new mojo bindings, to extract
and format the metadata for the mojos within. Below is a summary of the additional mojo bindings
provided by the maven-plugin packaging:

Table A-2: A summary of the additional mojo bindings

Phase Mojo Plugin Description
generate-
resources

descriptor maven-plugin-plugin Extract mojo metadata (from javadoc
annotations, for example), and generate a
plugin descriptor.

package addPluginArtifact
Metadata

maven-plugin-plugin Integrate current plugin information with
plugin search metadata, and metadata
references to latest plugin version.

install updateRegistry maven-plugin-plugin Update the plugin registry, if one exists, to
reflect the new plugin installed in the local
repository.

275

Better Builds with Maven

A.1.2. The clean Life Cycle
This life cycle is executed in order to restore a project back to some baseline state – usually, the state
of the project before it was built. Maven provides a set of default mojo bindings for this life cycle,
which perform the most common tasks involved in cleaning a project. Below is a listing of the phases
in the clean life cycle, along with a summary of the default bindings, effective for all POM packagings.

 Life-cycle phases
The clean life-cycle phase contains the following phases:

1. pre-clean – execute any setup or initialization procedures to prepare the project for
cleaning

2. clean – remove all files that were generated during another build process
3. post-clean – finalize the cleaning process.

 Default life-cycle bindings
Below are the clean life-cycle bindings for the jar packaging. Alongside each, you will find a short
description of what that mojo does.

Table A-3: The clean life-cycle bindings for the jar packaging

Phase Mojo Plugin Description
clean clean maven-clean-plugin Remove the project build directory, along with any additional

directories configured in the POM.

276

Appendix A: Resources for Plugin Developers

A.1.3. The site Life Cycle
This life cycle is executed in order to generate a web site for your project. It will run any reports that
are associated with your project, render your documentation source files into HTML, and even deploy
the resulting web site to your server. Maven provides a set of default mojo bindings for this life cycle,
which perform the most common tasks involved in generating the web site for a project. Below is a
listing of the phases in the site life cycle, along with a summary of the default bindings, effective for all
POM packagings.

 Life-cycle phases
The site life cycle contains the following phases:

1. pre-site – execute any setup or initialization steps to prepare the project for site
generation

2. site – run all associated project reports, and render documentation into HTML
3. post-site – execute any actions required to finalize the site generation process, and

prepare the generated web site for potential deployment
4. site-deploy – use the distributionManagement configuration in the project's POM

to deploy the generated web site files to the web server.

 Default Life Cycle Bindings
Below are the site life-cycle bindings for the jar packaging. Alongside each, you will find a short
description of what that mojo does.

Table A-4: The site life-cycle bindings for the jar packaging

Phase Mojo Plugin Description
site site maven-site-plugin Generate all configured project reports, and render

documentation source files into HTML.
site-deploy deploy maven-site-plugin Deploy the generated web site to the web server path

specified in the POM distribution Management section.

277

Better Builds with Maven

A.2. Mojo Parameter Expressions
Mojo parameter values are resolved by way of parameter expressions when a mojo is initialized.
These expressions allow a mojo to traverse complex build state, and extract only the information it
requires. This reduces the complexity of the code contained in the mojo, and often eliminates
dependencies on Maven itself beyond the plugin API.

This section discusses the expression language used by Maven to inject build state and plugin
configuration into mojos. It will summarize the root objects of the build state which are available for
mojo expressions. Finally, it will describe the algorithm used to resolve complex parameter
expressions.

Using the discussion below, along with the published Maven API documentation, mojo developers
should have everything they need to extract the build state they require.

A.2.1. Simple Expressions
Maven's plugin parameter injector supports several primitive expressions, which act as a shorthand
for referencing commonly used build state objects. They are summarized below:

Table A-5: Primitive expressions supported by Maven's plugin parameter

Expression Type Description
${localRepository} org.apache.maven.artifact.re

pository.ArtifactRepository This is a reference to the local repository
used to cache artifacts during a Maven build.

${session} org.apache.maven.execution.M
avenSession The current build session. This contains

methods for accessing information about
how Maven was called, in addition to
providing a mechanism for looking up
Maven components on-demand.

${reactorProjects} java.util.List<org.apache.ma
ven.project.MavenProject> List of project instances which will be

processed as part of the current build.
${reports} java.util.List<org.apache.ma

ven.reporting.MavenReport> List of reports to be generated when the site
life cycle executes.

${executedProject} org.apache.maven.project.Mav
enProject This is a cloned instance of the project

instance currently being built. It is used for
bridging results from forked life cycles back
to the main line of execution.

278

Appendix A: Resources for Plugin Developers

A.2.2. Complex Expression Roots
In addition to the simple expressions above, Maven supports more complex expressions that traverse
the object graph starting at some root object that contains build state. The valid root objects for plugin
parameter expressions are summarized below:

Table A-6: A summary of the valid root objects for plugin parameter expressions

Expression Root Type Description
${basedir} java.io.File The current project's root directory.
${project} org.apache.maven.project.Maven

Project Project instance which is currently being built.

${settings} org.apache.maven.settings.Sett
ings The Maven settings, merged from

conf/settings.xml in the maven application
directory and from .m2/settings.xml in the
user's home directory, unless specified otherwise.

${plugin} org.apache.maven.plugin.descri
ptor.PluginDescriptor The descriptor instance for the current plugin,

including its dependency artifacts.

A.2.3. The Expression Resolution Algorithm
Plugin parameter expressions are resolved using a straightforward algorithm. First, if the expression
matches one of the primitive expressions (mentioned above) exactly, then the value mapped to that
expression is returned. No advanced navigation can take place using is such expressions.

Otherwise, the expression is split at each '.' character, rendering an array of navigational directions.
The first is the root object, and must correspond to one of the roots mentioned above. This root object
is retrieved from the running application using a hard-wired mapping, much like a primitive expression
would. From there, the next expression part is used as a basis for reflectively traversing that object'
state. During this process, an expression part named 'child' translates into a call to the getChild()
method on that object, following standard JavaBeans naming conventions. The resulting value then
becomes the new 'root' object for the next round of traversal, if there is one. Repeating this,
successive expression parts will extract values from deeper and deeper inside the build state.

When there are no more expression parts, the value that was resolved last will be returned as the
expression's value. If at some point the referenced object doesn't contain a property that matches the
next expression part, this reflective lookup process is aborted.

279

Better Builds with Maven

If at this point Maven still has not been able to resolve a value for the parameter expression, it will
attempt to find a value in one of two remaining places, resolved in this order:

1. The POM properties. If a user has specified a property mapping this expression to a specific
value in the current POM, an ancestor POM, or an active profile, it will be resolved as the
parameter value at this point.

2. The system properties. If the value is still empty, Maven will consult the current system
properties. This includes properties specified on the command line using the -D command-
line option.

If the parameter is still empty after these two lookups, then the string literal of the expression itself is
used as the resolved value. Currently, Maven plugin parameter expressions do not support collection
lookups, array index references, or method invocations that don't conform to standard JavaBean
naming conventions.

 Plugin metadata
Below is a review of the mechanisms used to specify metadata for plugins. It includes summaries of
the essential plugin descriptor, as well as the metadata formats which are translated into plugin
descriptors from Java- and Ant-specific mojo source files.

 Plugin descriptor syntax
The following is a sample plugin descriptor. Its syntax has been annotated to provide descriptions of
the elements.

<plugin>
 <!-- The description element of the plugin's POM. -->
 <description>Sample Maven Plugin</description>
 <!-- These are the identity elements (groupId/artifactId/version)
 | from the plugin POM.
 |->
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-myplugin-plugin</artifactId>
 <version>2.0-SNAPSHOT</version>

 <!-- This element provides the shorthand reference for this plugin. For
 | instance, this plugin could be referred to from the command line using
 | the 'myplugin:' prefix.
 |->
 <goalPrefix>myplugin</goalPrefix>
 <!-- Whether the configuration for this mojo should be inherted from
 | parent to child POMs by default.
 |->
 <inheritedByDefault>true</inheritedByDefault>

 <!-- This is a list of the mojos contained within this plugin. -->
 <mojos>
 <mojo>

 <!-- The name of the mojo. Combined with the 'goalPrefix' element above,
 | this name allows the user to invoke this mojo from the command line
 | using 'myplugin:do-something'.
 |->

280

Appendix A: Resources for Plugin Developers

 <goal>do-something</goal>
 <!-- Description of what this mojo does. -->
 <description>Do something cool.</description>
 <!-- This tells Maven to create a clone of the current project and
 | life cycle, then execute that life cycle up to the specified phase.
 | This is useful when the user will be invoking this mojo directly from
 | the command line, but the mojo itself has certain life-cycle
 | prerequisites.
 |->
 <executePhase>process-resources</executePhase>
 <!-- This is optionally used in conjunction with the executePhase element,
 | and specifies a custom life-cycle overlay that should be added to the
 | cloned life cycle before the specified phase is executed. This is
 | useful to inject specialized behavior in cases where the main life
 | cycle should remain unchanged.
 |->
 <executeLifecycle>myLifecycle</executeLifecycle>
 <!-- Ensure that this other mojo within the same plugin executes before
 | this one. It's restricted to this plugin to avoid creating inter-plugin
 | dependencies.
 |->
 <executeGoal>do-something-first</executeGoal>
 <!-- Which phase of the life cycle this mojo will bind to by default.
 | This allows the user to specify that this mojo be executed (via the
 | <execution> section of the plugin configuration in the POM), without
 | also having to specify which phase is appropriate for the mojo's
 | execution. It is a good idea to provide this, to give users a hint
 | at where this task should run.
 |->
 <phase>compile</phase>
 <!-- Tells Maven that this mojo can ONLY be invoked directly, via the
 | command line.
 |->
 <requiresDirectInvocation>false</requiresDirectInvocation>
 <!-- Tells Maven that a valid project instance must be present for this
 | mojo to execute.
 |->
 <requiresProject>true</requiresProject>
 <!-- Tells Maven that a valid list of reports for the current project are
 | required before this plugin can execute.
 |->
 <requiresReports>false</requiresReports>
 <!-- Determines how Maven will execute this mojo in the context of a
 | multimodule build. If a mojo is marked as an aggregator, it will only
 | execute once, regardless of the number of project instances in the
 | current build. Mojos that are marked as aggregators should use the
 | ${reactorProjects} expression to retrieve a list of the project
 | instances in the current build. If the mojo is not marked as an
 | aggregator, it will be executed once for each project instance in the
 | current build.
 |->
 <aggregator>false</aggregator>
 <!-- Some mojos cannot execute if they don't have access to a network

281

Better Builds with Maven

 | connection. If Maven is operating in offline mode, such mojos will
 | cause the build to fail. This flag controls whether the mojo requires
 | Maven to be online.
 |->
 <requiresOnline>false</requiresOnline>
 <!-- Tells Maven that the this plugin's configuration should be inherted
 | from a parent POM by default, unless the user specifies
 | <inherit>false</inherit>.
 |->
 <inheritedByDefault>true</inheritedByDefault>

 <!-- The class or script path (within the plugin's jar) for this mojo's
 | implementation.
 |->
 <implementation>org.apache.maven.plugins.site.SiteDeployMojo</implementation>
 <!-- The implementation language for this mojo. -->
 <language>java</language>
 <!-- This is a list of the parameters used by this mojo. -->
 <parameters>
 <parameter>
 <!-- The parameter's name. In Java mojos, this will often reflect the
 | parameter field name in the mojo class.
 |->
 <name>inputDirectory</name>
 <!-- This is an optional alternate parameter name for this parameter.
 | It will be used as a backup for retrieving the parameter value.
 |->

 <alias>outputDirectory</alias>
 <!-- The Java type for this parameter. -->
 <type>java.io.File</type>
 <!-- Whether this parameter is required to have a value. If true, the
 | mojo (and the build) will fail when this parameter doesn't have a
 | value.
 |->
 <required>true</required>
 <!-- Whether this parameter's value can be directly specified by the
 | user, either via command-line or POM configuration. If set to
 | false, this parameter must be configured via some other section of
 | the POM, as in the case of the list of project dependencies.
 |->
 <editable>true</editable>
 <!-- Description for this parameter, specified in the javadoc comment
 | for the parameter field in Java mojo implementations.
 |->
 <description>This parameter does something important.</description>
 </parameter>
 </parameters>

282

Appendix A: Resources for Plugin Developers

 <!-- This is the operational specification of this mojo's parameters, as
 | compared to the descriptive specification above. Each parameter must
 | have an entry here that describes the parameter name, parameter type,
 | and the primary expression used to extract the parameter's value.
 |
 | The general form is:
 | <param-name implementation="param-type">param-expr</param-name>
 |
 |->
 <configuration>
 <!-- For example, this parameter is named "inputDirectory", and it
 | expects a type of java.io.File. The expression used to extract the
 | parameter value is ${project.reporting.outputDirectory}.
 |->
 <inputDirectory
implementation="java.io.File">${project.reporting.outputDirectory}</inputDirectory>
 </configuration>
 <!-- This is the list of non-parameter component references used by this
 | mojo. Components are specified by their interface class name (role),
 | along with an optional classifier for the specific component instance
 | to be used (role-hint). Finally, the requirement specification tells
 | Maven which mojo-field should receive the component instance.
 |->
 <requirements>
 <requirement>
 <!-- Use a component of type:
 org.apache.maven.artifact.manager.WagonManager
 |->
 <role>org.apache.maven.artifact.manager.WagonManager</role>
 <!-- Inject the component instance into the "wagonManager" field of
 | this mojo.
 |->
 <field-name>wagonManager</field-name>
 </requirement>
 </requirements>
 </mojo>
 </mojos>
</plugin>

283

Better Builds with Maven

A.2.4. Java Mojo Metadata: Supported Javadoc Annotations
The Javadoc annotations used to supply metadata about a particular mojo come in two types. Class-
level annotations correspond to mojo-level metadata elements, and field-level annotations correspond
to parameter-level metadata elements.

 Class-level annotations
The table below summarizes the class-level javadoc annotations which translate into specific
elements of the mojo section in the plugin descriptor.

Table A-7: A summary of class-level javadoc annotations

Descriptor Element Javadoc Annotation Values Required?
aggregator @aggregator true or false

(default is false)
No

description N/A (class comment) Anything No (recommended)
executePhase,
executeLifecycle,
executeGoal

@execute
goal=”mojo”
phase=”phase”
lifecycle=”lifecycle”

Any valid mojo, phase,
life cycle name.

No

goal @goal Alphanumeric, with dash
('-')

Yes

phase @phase Any valid phase name No
requiresDirectInvoc
ation

@requiresDirectInvocation true or false
(default is false)

No

requiresProject @requiresProject true or false
(default is true)

No

requiresReports @requiresReports true or false
(default is false)

No

requiresOnline @requiresOnline true or false
(default is false)

No

284

Appendix A: Resources for Plugin Developers

 Field-level annotations
The table below summarizes the field-level annotations which supply metadata about mojo
parameters. These metadata translate into elements within the parameter, configuration, and
requirements sections of a mojo's specification in the plugin descriptor.

Table A-8: Field-level annotations

Descriptor Element Javadoc Annotation Values Required?
alias, parameter-
configuration section

@parameter
expression=”${expr}”
alias=”alias”
default-value=”val”

Anything Yes

Requirements section @component
roleHint=”someHint” roleHint is optional, and

usually left blank No

required @required None No
editable @readonly None No
description N/A (field comment) Anything No (recommended)
deprecated @deprecated Alternative parameter No

A.2.5. Ant Metadata Syntax
The following is a sample Ant-based mojo metadata file. Its syntax has been annotated to provide
descriptions of the elements.

<pluginMetadata>
 <!-- Contains the list of mojos described by this metadata file. NOTE:
 | multiple mojos are allowed here, corresponding to the ability to map
 | multiple mojos into a single build script.
 |->
 <mojos>
 <mojo>
 <!-- The name for this mojo -->
 <goal>myGoal</goal>
 <!-- The default life-cycle phase binding for this mojo -->
 <phase>compile</phase>
 <!-- The dependency scope required for this mojo; Maven will resolve
 | the dependencies in this scope before this mojo executes.
 |->
 <requiresDependencyResolution>compile</requiresDependencyResolution>
 <!-- Whether this mojo requires a current project instance -->
 <requiresProject>true</requiresProject>
 <!-- Whether this mojo requires access to project reports -->
 <requiresReports>true</requiresReports>

285

Better Builds with Maven

 <!-- Whether this mojo requires Maven to execute in online mode -->
 <requiresOnline>true</requiresOnline>
 <!-- Whether the configuration for this mojo should be inherited
 | from parent to child POMs by default.
 |->
 <inheritByDefault>true</inheritByDefault>
 <!-- Whether this mojo must be invoked directly from the command
 | line.
 |->
 <requiresDirectInvocation>true</requiresDirectInvocation>
 <!-- Whether this mojo operates as an aggregator -->
 <aggregator>true</aggregator>

 <!-- This describes the mechanism for forking a new life cycle to be
 | executed prior to this mojo executing.
 |->
 <execute>
 <!-- The phase of the forked life cycle to execute -->
 <phase>initialize</phase>
 <!-- A named overlay to augment the cloned life cycle for this fork
 | only
 |->
 <lifecycle>mine</lifecycle>
 <!-- Another mojo within this plugin to execute before this mojo
 | executes.
 |->
 <goal>goal</goal>
 </execute>

 <!-- List of non-parameter application components used in this mojo -->
 <components>
 <component>
 <!-- This is the type for the component to be injected. -->
 <role>org.apache.maven.artifact.resolver.ArtifactResolver</role>
 <!-- This is an optional classifier for which instance of a particular
 | component type should be used.
 |->
 <hint>custom</hint>
 </component>
 </components>

 <!-- The list of parameters this mojo uses -->
 <parameters>
 <parameter>
 <!-- The parameter name. -->
 <name>nom</name>
 <!-- The property name used by Ant tasks to reference this parameter
 | value.
 |->
 <property>prop</property>
 <!-- Whether this parameter is required for mojo execution -->

286

Appendix A: Resources for Plugin Developers

 <required>true</required>
 <!-- Whether the user can edit this parameter directly in the POM
 | configuration or the command line
 |->
 <readonly>true</readonly>
 <!-- The expression used to extract this parameter's value -->
 <expression>${my.property}</expression>
 <!-- The default value provided when the expression won't resolve -->
 <defaultValue>${project.artifactId}</defaultValue>
 <!-- The Java type of this mojo parameter -->
 <type>org.apache.maven.project.MavenProject</type>
 <!-- An alternative configuration name for this parameter -->
 <alias>otherProp</alias>
 <!-- The description of this parameter -->
 <description>Test parameter</description>
 <!-- When this is specified, this element will provide advice for an
 | alternative parameter to use instead.
 |->
 <deprecated>Use something else</deprecated>
 </parameter>
 </parameters>

 <!-- The description of what the mojo is meant to accomplish -->
 <description>
 This is a test.
 </description>

 <!-- If this is specified, it provides advice on which alternative mojo
 | to use.
 |->
 <deprecated>Use another mojo</deprecated>
 </mojo>
 </mojos>
</pluginMetadata>

287

Better Builds with Maven

This page left intentionally blank.

288

Appendix B: Standard Conventions

Appendix B: Standard Conventions
In this appendix you will find:

• Standard Directory Structure for Maven Project Content
• Maven’s Super POM
• Maven’s Default Build Life Cycle

Kirk: Do you want to know something?
Everybody's human.

Spock: I find that remark insulting.

- Star Trek

289

Better Builds with Maven

B.1. Standard Directory Structure

Table B-1: Standard directory layout for maven project content

Standard Location Description
pom.xml Maven’s POM, which is always at the top-level of a project.
LICENSE.txt A license file is encouraged for easy identification by users

and is optional.
README.txt A simple note which might help first time users and is

optional.
target/ Directory for all generated output. This would include

compiled classes, generated sources that may be compiled,
the generated site or anything else that might be generated
as part of your build.

target/generated-sources/<plugin-id> Standard location for generated sources. For example, you
may generate some sources from a JavaCC grammar.

src/main/java/ Standard location for application sources.
src/main/resources/ Standard location for application resources.
src/main/filters/ Standard location for resource filters.
src/main/assembly/ Standard location for assembly filters.
src/main/config/ Standard location for application configuration filters.
src/test/java/ Standard location for test sources.
src/test/resources/ Standard location for test resources.
src/test/filters/ Standard location for test resource filters.

290

Appendix B: Standard Conventions

B.2. Maven’s Super POM
<project>
 <modelVersion>4.0.0</modelVersion>
 <name>Maven Default Project</name>
 <!-- Repository Conventions -->
 <repositories>
 <repository>
 <id>central</id>
 <name>Maven Repository Switchboard</name>
 <layout>default</layout>
 <url>http://repo1.maven.org/maven2</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>
 <!-- Plugin Repository Conventions -->
 <pluginRepositories>
 <pluginRepository>
 <id>central</id>
 <name>Maven Plugin Repository</name>
 <url>http://repo1.maven.org/maven2</url>
 <layout>default</layout>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <releases>
 <updatePolicy>never</updatePolicy>
 </releases>
 </pluginRepository>
 </pluginRepositories>
 <!-- Build Conventions -->
 <build>
 <directory>target</directory>
 <outputDirectory>target/classes</outputDirectory>
 <finalName>${artifactId}-${version}</finalName>
 <testOutputDirectory>target/test-classes</testOutputDirectory>
 <sourceDirectory>src/main/java</sourceDirectory>
 <scriptSourceDirectory>src/main/scripts</scriptSourceDirectory>
 <testSourceDirectory>src/test/java</testSourceDirectory>
 <resources>
 <resource>
 <directory>src/main/resources</directory>
 </resource>
 </resources>
 <testResources>
 <testResource>
 <directory>src/test/resources</directory>
 </testResource>
 </testResources>
 </build>
 <!-- Reporting Conventions -->
 <reporting>
 <outputDirectory>target/site</outputDirectory>
 </reporting>
 ...
</project>

291

Better Builds with Maven

B.3. Maven’s Default Build Life Cycle

Table B-2: Phases in Maven's life cycle

Phase Description

validate Validate the project is correct and all necessary information is available.

initialize Initialize the build process.

generate-sources Generate any source code for inclusion in compilation.

process-sources Process the source code, for example to filter any values.

generate-resources Generate resources for inclusion in the package.

process-resources Copy and process the resources into the destination directory, ready for packaging.

compile Compile the source code of the project.

process-classes Post-process the generated files from compilation, for example to do byte code
enhancement on Java classes.

generate-test-sources Generate any test source code for inclusion in compilation.

process-test-sources Process the test source code, for example to filter any values.

generate-test-resources Create resources for testing.

process-test-resources Copy and process the resources into the test destination directory.

test-compile Compile the test source code into the test destination directory

test Run tests using a suitable unit testing framework. These tests should not require the
code be packaged or deployed.

package Take the compiled code and package it in its distributable format, such as a JAR.

pre-integration-test Perform actions required before integration tests are executed. This may involve
things such as setting up the required environment.

integration-test Process and deploy the package if necessary into an environment where integration
tests can be run.

post-integration-test Perform actions required after integration tests have been executed. This may
including cleaning up the environment.

verify Run any checks to verify the package is valid and meets quality criteria.

install Install the package into the local repository, for use as a dependency in other
projects locally.

deploy Done in an integration or release environment, copies the final package to the
remote repository for sharing with other developers and projects.

292

Bibliography

Bibliography

Online Books
des Rivieres, Jim. Evolving Java-based APIs. June 8, 2001 -
http://www.eclipse.org/eclipse/development/java-api-evolution.html

Bloch, Joshua. Effective Java. Sun Developer Network - http://java.sun.com/docs/books/effective/

Web Sites
Axis Building Java Classes from WSDL-
http://ws.apache.org/axis/java/userguide.html#WSDL2JavaBuildingStubsSkeletonsAndDataTypesFromWSDL

Axis Tool Plugin - http://ws.apache.org/axis/java/

AxisTools Reference Documentation - http://mojo.codehaus.org/axistools-maven-plugin/

Cargo Containers Reference - http://cargo.codehaus.org/Containers

Cargo Container Deployments - http://cargo.codehaus.org/Deploying+to+a+running+container

Cargo Plugin Configuration Options - http://cargo.codehaus.org/Maven2+plugin

Cargo Merging War Files Plugin - http://cargo.codehaus.org/Merging+WAR+files

Cargo Reference Documentation - http://cargo.codehaus.org/

Checkstyle - http://checkstyle.sf.net/config.html

293

http://checkstyle.sf.net/config.html
http://cargo.codehaus.org/
http://cargo.codehaus.org/Merging+WAR+files
http://cargo.codehaus.org/Maven2+plugin
http://cargo.codehaus.org/Deploying+to+a+running+container
http://cargo.codehaus.org/Containers
http://mojo.codehaus.org/axistools-maven-plugin/
http://ws.apache.org/axis/java/
http://ws.apache.org/axis/java/userguide.html#WSDL2JavaBuildingStubsSkeletonsAndDataTypesFromWSDL
http://java.sun.com/docs/books/effective/
http://www.eclipse.org/eclipse/development/java-api-evolution.html

Better Builds with Maven

Checkstyle Available Checks - http://checkstyle.sf.net/availablechecks.html

Cobertura - http://cobertura.sf.net/

Clirr - http://clirr.sf.net/

Clover Plugin - http://maven.apache.org/plugins/maven-clover-plugin/

DBUnit Java API - http://dbunit.sourceforge.net/

EJB Plugin Documentation - http://maven.apache.org/plugins/maven-ejb-plugin/

ibiblio- www.ibiblio.com

Introduction to Archetypes - http://maven.apache.org/guides/introduction/introduction-to-archetypes.html

Introduction to the Build Life Cycle – Maven - http://maven.apache.org/guides/introduction/introduction-to-the-
lifecycle.html

Jdiff - http://mojo.codehaus.org/jdiff-maven-plugin

Jetty 6 Plugin Documentation - http://jetty.mortbay.org/jetty6/maven-plugin/index.html

Jester - http://jester.sf.net

J2EE Specification - http://java.sun.com/j2ee/reference/api/

Maven 2 Wiki - www.apache.maven.org

Maven Downloads - http://maven.apache.org/download.html

Maven Plugins - http://maven.apache.org/plugins/

Mojo - http://mojo.codehaus.org/

PMD Best Practices - http://pmd.sf.net/bestpractices.html

PMD Rulesets - http://pmd.sf.net/howtomakearuleset.html

POM Reference - http://maven.apache.org/maven-model/maven.html

Ruby on Rails - http://www.rubyonrails.org/

Simian - http://www.redhillconsulting.com.au/products/simian/

Tomcat Manager Web Application - http://tomcat.apache.org/tomcat-5.0-doc/manager-howto.html

Xdoclet - http://xdoclet.sourceforge.net/

XDoclet EjbDocletTask - http://xdoclet.sourceforge.net/xdoclet/ant/xdoclet/modules/ejb/EjbDocletTask.html

XDoclet Maven Plugin - http://mojo.codehaus.org/xdoclet-maven-plugin/

XDoclet Reference Documentation -
http://xdoclet.sourceforge.net/xdoclet/ant/xdoclet/modules/ejb/EjbDocletTask.html

Xdoclet2 - http://xdoclet.codehaus.org

XDoclet2 Maven Plugin - http://xdoclet.codehaus.org/Maven2+Plugin

294

http://xdoclet.codehaus.org/Maven2+Plugin
http://xdoclet.codehaus.org/
http://xdoclet.sourceforge.net/xdoclet/ant/xdoclet/modules/ejb/EjbDocletTask.html
http://mojo.codehaus.org/xdoclet-maven-plugin/
http://xdoclet.sourceforge.net/xdoclet/ant/xdoclet/modules/ejb/EjbDocletTask.html
http://xdoclet.sourceforge.net/
http://tomcat.apache.org/tomcat-5.0-doc/manager-howto.html
http://www.redhillconsulting.com.au/products/simian/
http://www.rubyonrails.org/
http://maven.apache.org/maven-model/maven.html
http://pmd.sf.net/howtomakearuleset.html
http://pmd.sf.net/bestpractices.html
http://mojo.codehaus.org/
http://maven.apache.org/plugins/
http://maven.apache.org/download.html
http://www.apache.maven.org/
http://java.sun.com/j2ee/reference/api/
http://jester.sf.net/
http://jetty.mortbay.org/jetty6/maven-plugin/index.html
http://mojo.codehaus.org/jdiff-maven-plugin
http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
http://maven.apache.org/guides/introduction/introduction-to-archetypes.html
http://www.ibiblio.com/
http://maven.apache.org/plugins/maven-ejb-plugin/
http://dbunit.sourceforge.net/
http://maven.apache.org/plugins/maven-clover-plugin/
http://clirr.sf.net/
http://cobertura.sf.net/
http://checkstyle.sf.net/availablechecks.html

Index

Index

A
Alexander, Christopher 25
Ant

metadata syntax 285-287
migrating from 245-260, 262-269

Apache
Avalon project 196
Commons Collections 258
Commons Logging library 256
Geronimo project 86, 97
HTTPd 216
Maven project 134, 167
Software Foundation 22, 23, 219, 221
Tomcat 216

application
building J2EE 85-88, 90-99, 101-110, 112, 114-122,
124, 126-132
creating 55-64, 82
creating a Web site for 78-81, 83, 84
DayTrader 86-88, 90
deploying 55, 74, 76, 77, 84
managing dependencies 61, 62, 84
modules 56
preparing a release 240-243
project inheritance 55, 59-62, 84
Separation of Concerns (SoC) 56
setting up the directory structure 56-59

APT format 78
archetypes

creating standard project 237, 238
definition of 39

artifactId 29, 112, 249, 256
ASF 23
aspectj/src directory 247
aspectj/test directory 247

B
Bentley, Jon 37
Berard, Edward V. 55
bibliography 293, 294
binding 135, 274, 275, 277
build life cycle 30, 41, 55, 68, 69, 84, 134-136, 143, 152,
160, 163, 167, 292
Butler, Samuel 169

C
Cargo 103-105, 107, 129, 130
Changes report 185
Checkstyle report 184, 189, 194, 196
Clancy, Tom 211
classpath

adding resources for unit tests 48
filtering resources 49-51
handling resources 46, 48, 50-52
preventing filtering of resources 52
testing 35

clean life cycle 276
Clirr report 185, 205-208
Cobertura 184, 197-201
code

improving quality of 205-208
restructuring 269

code restructuring to migrate to Maven 269
Codehaus Mojo project 134, 167
collaborating with teams

introduction to 211
issues facing teams 212, 213
setting up shared development environments 213-216

Community-oriented Real-time Engineering (CoRE) 212
compiling

application sources 40, 41
main Spring source 254-258
test sources 42, 43
tests 258, 259

Confluence format 79
container 62, 86, 87, 95, 100, 103-105, 111, 112, 114, 116,
117, 122, 124, 129, 131, 187, 217, 228
Continuum

continuous integration with 222, 224, 226-230, 232-236
creating standard project 238, 239

conventions
about 26
default 29
default build life cycle 292
Maven’s super POM 291
naming 56
single primary output per project 27
standard directory layout for projects 27
standard directory structure 290
standard naming conventions 28

copy/paste detection report 193

295

Better Builds with Maven

CPD report 184, 193

D
DayTrader

architecture 86, 87
building a Web module 105-108
organizing the directory structure 87, 88, 90
Quote Streamer 87

default
build life cycle 41, 68, 292
conventions 29
location of local repository 44
naming conventions 56
pom.xml 39, 47, 49-51
structures 24

dependencies
determining versions for 257
locating dependency artifacts 34
maintaining 202-204
organization of 31
relationship between Spring modules 247
resolving conflicts 64-67
specifying snapshot versions for 63
using version ranges to resolve conflicts 64-67

Dependency Convergence report 184
Deployer tool 122, 124
deploying applications

methods of 74, 76, 77
to the file system 74
with an external SSH 76
with FTP 77
with SFTP 75
with SSH2 75

development environment 213-216
directories

aspectj/src 247
aspectj/test 247
m2 248, 249
mock 247
my-app 39
src 40, 247, 249
standard structure 290
test 247, 249
tiger 263, 264, 266
tiger/src 247
tiger/test 247

directory structures
building a Web services client project 94
flat 88
nested 89

DocBook format 79
DocBook Simple format 78

E
Einstein, Albert 21
EJB

building a project 95-97, 99
canonical directory structure for 95
deploying 103-105
plugin documentation 98
Xdoclet 100, 101

external SSH 76

F
Feynman, Richard 133
filtering

classpath resources 49-51
preventing on classpath resources 52

FindBugs report 197
FML format 78
FTP 77

G
groupId 29, 34, 249, 256

H
Hansson, David Heinemeier 26
hibernate3 test 252

I
IBM 86
improving quality of code 205, 207, 208
internal repository 216

J
J2EE

building applications 85-88, 91-99, 101-110, 112, 114-
122, 124, 126-132
deploying applications 122, 124, 125
Geronimo specifications JAR 107
testing applications 126, 127, 129-132

Java
description 30
java.lang.Object 29
mojo metadata 284-287
Spring Framework 246-250, 254
url 30

Java EE 86
Javadoc

class-level annotations 284
field-level annotations 285

296

Index

report 184, 185, 187, 188
JDK 252
Jester 201
JSP 105
JXR report 184-186

K
Keller, Helen 85

L
life cycle

default 272, 273
for jar packaging 136

local repository
default location of 44
installing to 44, 45
requirement for Maven 32
storing artifacts in 35

locating dependency artifacts 35

M
m2 directory 248, 249
Maven

Apache Maven project 134, 167
artifact guideline 87
build life cycle 41
collaborating with 211-225, 227-236, 238-244
compiling application sources 40, 41
configuration of reports 173, 175, 176
creating your first project 39, 40
default build life cycle 68, 69, 292
developing custom 135, 136
developing custom plugins 133-140, 142, 143, 145-161,
163-165, 167
documentation formats for Web sites 78, 79
getting started with 37-46, 48-53
groupId 34
integrating with Cobertura 197-201
JDK requirement 252
life-cycle phases 272, 273
migrating to 245-258
naming conventions 56
origins of 23
plugin descriptor 137
plugin descriptor 138
preparing to use 38
Repository Manager (MRM) 217
standard conventions 289-292
super POM 291
using Ant tasks from inside 266, 267

using plugins 53
using to assess project health 170
XDoclet plugin 101
XDoclet2 102

maven-plugin packaging 275
McIlroy, Doug 37
migrating to Maven 245-258
mock directory 247
modelVersion 29
modules

avoiding duplication 262
building EJB with Xdoclet 100-102
building Java 5 classes 263-266
dedpendency relationship between Spring 247
EAR 87
EJB 87
flat directory structure 88
installing non-redistributable JARs 268
JAR 87
multi-module build 56, 57
naming 88
naming conventions 56
nested directory structure 89
referring to test classes from 263
tiger 264
WAR 88

mojos
accessing build information 137
addition 279
advanced development 153, 155-163
basic development 141-144, 146, 148, 150-152
capturing information with Java 141-147
definition of 134
implementation language 140
parameter expressions 278-281, 283-287
phase binding 135, 136
requiring dependency resolution 155, 156
writing Ant mojos to send e-mail 149-152

my-app directory 39

N
name (element) 30
naming conventions 56

O
overview

benefits of Maven 36
local repository 32-34
principles of Maven 25-27, 30, 32-35
Ruby on Rails (ROR) 26

297

Better Builds with Maven

P
packaging 30, 249
parameter injection 135
phase binding 135, 136
plugin descriptor 137, 138
plugins

definition of 28, 134
developer resources 271-280, 282, 284-287
developing custom 133, 134, 137-140, 142, 143, 145-
153, 155-161, 163-165, 167
development tools 138-140
framework for 135, 136
Plugin Matrix 134
terminology 134, 135
using 53, 54

PMD report 184, 189-191, 193
POM 22, 215, 218, 219

creating an organization 219-221
creating files 254
key elements 29
super 29, 291
tiger 265

pom.xml 29, 39, 64, 88-90, 92, 96, 97, 101, 103, 106-109,
113-118, 123, 124, 126, 127, 129, 171, 173, 176, 177, 180-
182, 186-188, 190-192, 195, 197, 199, 200, 206, 207, 209,
225, 230, 231, 233, 234, 238, 239, 241-243, 290
preparing to use Maven 38
profiles 55, 70, 72-74
project

assessing health of 169-174, 176, 178-183, 185-187,
189, 191-194, 196-209
inheritance 55, 59-62, 84
monitoring overall health of 209

project management framework 22
Project Object Model 22

Q
Quote Streamer 87

R
releasing projects 240-243
reports

adding to project Web site 171-173
Changes 185
Checkstyle 184, 189, 194, 196
Clirr 185, 205-208
configuration of 173-176
copy/paste detection 193
CPD 184, 193
creating source code reference 185, 187
Dependency Convergence 184

FindBugs 197
Javadoc 184, 185, 187, 188
JavaNCSS 197
JXR 184-186
PMD 184, 189-191, 193
selecting 183, 184
separating from user documentation 177-182
standard project information reports 80
Surefire 171, 172, 174-176, 184, 197, 200, 201
Tag List 184, 189, 196, 197

repository
creating a shared 216-218
internal 216
local 32, 34, 35
manager 217
types of 32

restructuring code 269
Ruby on Rails (ROR) 294
running tests 260

S
SCM 35, 216, 219, 235, 240-243
SFTP 75
site descriptor 80
site life cycle 277
snapshot 55, 63, 66, 67, 156, 184, 233
Spring Framework 35, 246-250, 254
src directory 40, 247, 249
SSH2 75
Surefire report 171, 172, 174-176, 184, 197, 200, 201

T
Tag List report 184, 189, 196, 197
test directory 247, 249
testing sources 42, 43
tests

compiling 258, 259
hibernate3 252
JUnit 247
monitoring 197-201
running 260

tiger/src directory 247
tiger/test directory 247
Twiki format 79

V
version 30, 249, 256
version ranges 55, 64, 65, 67

298

Index

W
Web development

building a Web services client project 91-93, 117-122
deploying Web applications 114, 115, 117
improving productivity 108, 110-112, 114

X
XDOC format 78
Xdoclet 100, 101
XDoclet2 102

299

	Preface
	1. Introducing Maven
	1.1. Maven Overview
	1.1.1. What is Maven?
	1.1.2. Maven's Origins
	1.1.3. What Does Maven Provide?

	1.2. Maven’s Principles
	1.2.1. Convention Over Configuration
	Standard directory layout for projects
	One primary output per project
	Standard naming conventions

	1.2.2. Reuse of Build Logic
	1.2.3. Declarative Execution
	Maven's project object model (POM)
	Maven's build life cycle

	1.2.4. Coherent Organization of Dependencies
	Local Maven repository
	Locating dependency artifacts

	1.3. Maven's Benefits

	2. Getting Started with Maven
	2.1. Preparing to Use Maven
	2.2. Creating Your First Maven Project
	2.3. Compiling Application Sources
	2.4. Compiling Test Sources and Running Unit Tests
	2.5. Packaging and Installation to Your Local Repository
	2.6. Handling Classpath Resources
	2.6.1. Handling Test Classpath Resources
	2.6.2. Filtering Classpath Resources
	2.6.3. Preventing Filtering of Binary Resources

	2.7. Using Maven Plugins
	2.8. Summary

	3. Creating Applications with Maven
	3.1. Introduction
	3.2. Setting Up an Application Directory Structure
	3.3. Using Project Inheritance
	3.4. Managing Dependencies
	3.5. Using Snapshots
	3.6. Resolving Dependency Conflicts and Using Version Ranges
	3.7. Utilizing the Build Life Cycle
	3.8. Using Profiles
	3.9. Deploying your Application
	3.9.1. Deploying to the File System
	3.9.2. Deploying with SSH2
	3.9.3. Deploying with SFTP
	3.9.4. Deploying with an External SSH
	3.9.5. Deploying with FTP

	3.10. Creating a Web Site for your Application
	3.11. Summary

	4. Building J2EE Applications
	4.1. Introduction
	4.2. Introducing the DayTrader Application
	4.3. Organizing the DayTrader Directory Structure
	4.4. Building a Web Services Client Project
	4.5. Building an EJB Project
	4.6. Building an EJB Module With Xdoclet
	4.7. Deploying EJBs
	4.8. Building a Web Application Project
	4.9. Improving Web Development Productivity
	4.10. Deploying Web Applications
	4.11. Building an EAR Project
	4.12. Deploying a J2EE Application
	4.13. Testing J2EE Application
	4.14. Summary

	5. Developing Custom Maven Plugins
	5.1. Introduction
	5.2. A Review of Plugin Terminology
	5.3. Bootstrapping into Plugin Development
	5.3.1. The Plugin Framework
	Participation in the build life cycle
	Accessing build information
	The plugin descriptor

	5.3.2. Plugin Development Tools
	Choose your mojo implementation language

	5.3.3. A Note on the Examples in this Chapter

	5.4. Developing Your First Mojo
	5.4.1. BuildInfo Example: Capturing Information with a Java Mojo
	Prerequisite: Building the buildinfo generator project
	Using the archetype plugin to generate a stub plugin project
	The mojo
	The Plugin POM
	Binding to the life cycle
	The output

	5.4.2. BuildInfo Example: Notifying Other Developers with an Ant Mojo
	The Ant target
	The Mojo Metadata file
	Modifying the Plugin POM for Ant Mojos
	Binding the Notify Mojo to the life cycle

	5.5. Advanced Mojo Development
	5.5.1. Gaining Access to Maven APIs
	5.5.2. Accessing Project Dependencies
	Injecting the project dependency set
	Requiring dependency resolution
	BuildInfo example: logging dependency versions

	5.5.3. Accessing Project Sources and Resources
	Adding a source directory to the build
	Adding a resource to the build
	Accessing the source-root list
	Accessing the resource list
	Note on testing source-roots and resources

	5.5.4. Attaching Artifacts for Installation and Deployment

	5.6. Summary

	6. Assessing Project Health with Maven
	6.1. What Does Maven Have to do With Project Health?
	6.2. Adding Reports to the Project Web site
	6.3. Configuration of Reports
	6.4. Separating Developer Reports From User Documentation
	6.5. Choosing Which Reports to Include
	6.6. Creating Reference Material
	6.7. Monitoring and Improving the Health of Your Source Code
	6.8. Monitoring and Improving the Health of Your Tests
	6.9. Monitoring and Improving the Health of Your Dependencies
	6.10. Monitoring and Improving the Health of Your Releases
	6.11. Viewing Overall Project Health
	6.12. Summary

	7. Team Collaboration with Maven
	7.1. The Issues Facing Teams
	7.2. How to Set up a Consistent Developer Environment
	7.3. Creating a Shared Repository
	7.4. Creating an Organization POM
	7.5. Continuous Integration with Continuum
	7.6. Team Dependency Management Using Snapshots
	7.7. Creating a Standard Project Archetype
	7.8. Cutting a Release
	7.9. Summary

	8. Migrating to Maven
	8.1. Introduction
	8.1.1. Introducing the Spring Framework

	8.2. Where to Begin?
	8.3. Creating POM files
	8.4. Compiling
	8.5. Testing
	8.5.1. Compiling Tests
	8.5.2. Running Tests

	8.6. Other Modules
	8.6.1. Avoiding Duplication
	8.6.2. Referring to Test Classes from Other Modules
	8.6.3. Building Java 5 Classes
	8.6.4. Using Ant Tasks From Inside Maven
	8.6.5. Non-redistributable Jars
	8.6.6. Some Special Cases

	8.7. Restructuring the Code
	8.8. Summary

	Appendix A: Resources for Plugin Developers
	A.1. Maven's Life Cycles
	A.1.1. The default Life Cycle
	Life-cycle phases
	Bindings for the jar packaging
	Bindings for the maven-plugin packaging

	A.1.2. The clean Life Cycle
	Life-cycle phases
	Default life-cycle bindings

	A.1.3. The site Life Cycle
	Life-cycle phases
	Default Life Cycle Bindings

	A.2. Mojo Parameter Expressions
	A.2.1. Simple Expressions
	A.2.2. Complex Expression Roots
	A.2.3. The Expression Resolution Algorithm
	Plugin metadata
	Plugin descriptor syntax

	A.2.4. Java Mojo Metadata: Supported Javadoc Annotations
	Class-level annotations
	Field-level annotations

	A.2.5. Ant Metadata Syntax

	Appendix B: Standard Conventions
	B.1. Standard Directory Structure
	B.2. Maven’s Super POM
	B.3. Maven’s Default Build Life Cycle

	Bibliography
	Index

